{"title":"计算机断层扫描和结构光成像引导骨科导航穿刺系统:有效减少术中图像漂移和不匹配。","authors":"Zaopeng He, Guanghua Xu, Guodong Zhang, Zeyu Wang, Jingsong Sun, Wei Li, Dongbo Liu, Yibin Tian, Wenhua Huang, Daozhang Cai","doi":"10.3389/fsurg.2024.1476245","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Image-guided surgical navigation systems are widely regarded as the benchmark for computer-assisted surgical robotic platforms, yet a persistent challenge remains in addressing intraoperative image drift and mismatch. It can significantly impact the accuracy and precision of surgical procedures. Therefore, further research and development are necessary to mitigate this issue and enhance the overall performance of these advanced surgical platforms.</p><p><strong>Objective: </strong>The primary objective is to improve the precision of image guided puncture navigation systems by developing a computed tomography (CT) and structured light imaging (SLI) based navigation system. Furthermore, we also aim to quantifying and visualize intraoperative image drift and mismatch in real time and provide feedback to surgeons, ensuring that surgical procedures are executed with accuracy and reliability.</p><p><strong>Methods: </strong>A CT-SLI guided orthopedic navigation puncture system was developed. Polymer bandages are employed to pressurize, plasticize, immobilize and toughen the surface of a specimen for surgical operations. Preoperative CT images of the specimen are acquired, a 3D navigation map is reconstructed and a puncture path planned accordingly. During surgery, an SLI module captures and reconstructs the 3D surfaces of both the specimen and a guiding tube for the puncture needle. The SLI reconstructed 3D surface of the specimen is matched to the CT navigation map via two-step point cloud registrations, while the SLI reconstructed 3D surface of the guiding tube is fitted by a cylindrical model, which is in turn aligned with the planned puncture path. The proposed system has been tested and evaluated using 20 formalin-soaked lower limb cadaver specimens preserved at a local hospital.</p><p><strong>Results: </strong>The proposed method achieved image registration RMS errors of 0.576 ± 0.146 mm and 0.407 ± 0.234 mm between preoperative CT and intraoperative SLI surface models and between preoperative and postoperative CT surface models. In addition, preoperative and postoperative specimen surface and skeletal drifts were 0.033 ± 0.272 mm and 0.235 ± 0.197 mm respectively.</p><p><strong>Conclusion: </strong>The results indicate that the proposed method is effective in reducing intraoperative image drift and mismatch. The system also visualizes intraoperative image drift and mismatch, and provides real time visual feedback to surgeons.</p>","PeriodicalId":12564,"journal":{"name":"Frontiers in Surgery","volume":"11 ","pages":"1476245"},"PeriodicalIF":1.6000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499228/pdf/","citationCount":"0","resultStr":"{\"title\":\"Computed tomography and structured light imaging guided orthopedic navigation puncture system: effective reduction of intraoperative image drift and mismatch.\",\"authors\":\"Zaopeng He, Guanghua Xu, Guodong Zhang, Zeyu Wang, Jingsong Sun, Wei Li, Dongbo Liu, Yibin Tian, Wenhua Huang, Daozhang Cai\",\"doi\":\"10.3389/fsurg.2024.1476245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Image-guided surgical navigation systems are widely regarded as the benchmark for computer-assisted surgical robotic platforms, yet a persistent challenge remains in addressing intraoperative image drift and mismatch. It can significantly impact the accuracy and precision of surgical procedures. Therefore, further research and development are necessary to mitigate this issue and enhance the overall performance of these advanced surgical platforms.</p><p><strong>Objective: </strong>The primary objective is to improve the precision of image guided puncture navigation systems by developing a computed tomography (CT) and structured light imaging (SLI) based navigation system. Furthermore, we also aim to quantifying and visualize intraoperative image drift and mismatch in real time and provide feedback to surgeons, ensuring that surgical procedures are executed with accuracy and reliability.</p><p><strong>Methods: </strong>A CT-SLI guided orthopedic navigation puncture system was developed. Polymer bandages are employed to pressurize, plasticize, immobilize and toughen the surface of a specimen for surgical operations. Preoperative CT images of the specimen are acquired, a 3D navigation map is reconstructed and a puncture path planned accordingly. During surgery, an SLI module captures and reconstructs the 3D surfaces of both the specimen and a guiding tube for the puncture needle. The SLI reconstructed 3D surface of the specimen is matched to the CT navigation map via two-step point cloud registrations, while the SLI reconstructed 3D surface of the guiding tube is fitted by a cylindrical model, which is in turn aligned with the planned puncture path. The proposed system has been tested and evaluated using 20 formalin-soaked lower limb cadaver specimens preserved at a local hospital.</p><p><strong>Results: </strong>The proposed method achieved image registration RMS errors of 0.576 ± 0.146 mm and 0.407 ± 0.234 mm between preoperative CT and intraoperative SLI surface models and between preoperative and postoperative CT surface models. In addition, preoperative and postoperative specimen surface and skeletal drifts were 0.033 ± 0.272 mm and 0.235 ± 0.197 mm respectively.</p><p><strong>Conclusion: </strong>The results indicate that the proposed method is effective in reducing intraoperative image drift and mismatch. The system also visualizes intraoperative image drift and mismatch, and provides real time visual feedback to surgeons.</p>\",\"PeriodicalId\":12564,\"journal\":{\"name\":\"Frontiers in Surgery\",\"volume\":\"11 \",\"pages\":\"1476245\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Surgery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fsurg.2024.1476245\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"SURGERY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fsurg.2024.1476245","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
Computed tomography and structured light imaging guided orthopedic navigation puncture system: effective reduction of intraoperative image drift and mismatch.
Background: Image-guided surgical navigation systems are widely regarded as the benchmark for computer-assisted surgical robotic platforms, yet a persistent challenge remains in addressing intraoperative image drift and mismatch. It can significantly impact the accuracy and precision of surgical procedures. Therefore, further research and development are necessary to mitigate this issue and enhance the overall performance of these advanced surgical platforms.
Objective: The primary objective is to improve the precision of image guided puncture navigation systems by developing a computed tomography (CT) and structured light imaging (SLI) based navigation system. Furthermore, we also aim to quantifying and visualize intraoperative image drift and mismatch in real time and provide feedback to surgeons, ensuring that surgical procedures are executed with accuracy and reliability.
Methods: A CT-SLI guided orthopedic navigation puncture system was developed. Polymer bandages are employed to pressurize, plasticize, immobilize and toughen the surface of a specimen for surgical operations. Preoperative CT images of the specimen are acquired, a 3D navigation map is reconstructed and a puncture path planned accordingly. During surgery, an SLI module captures and reconstructs the 3D surfaces of both the specimen and a guiding tube for the puncture needle. The SLI reconstructed 3D surface of the specimen is matched to the CT navigation map via two-step point cloud registrations, while the SLI reconstructed 3D surface of the guiding tube is fitted by a cylindrical model, which is in turn aligned with the planned puncture path. The proposed system has been tested and evaluated using 20 formalin-soaked lower limb cadaver specimens preserved at a local hospital.
Results: The proposed method achieved image registration RMS errors of 0.576 ± 0.146 mm and 0.407 ± 0.234 mm between preoperative CT and intraoperative SLI surface models and between preoperative and postoperative CT surface models. In addition, preoperative and postoperative specimen surface and skeletal drifts were 0.033 ± 0.272 mm and 0.235 ± 0.197 mm respectively.
Conclusion: The results indicate that the proposed method is effective in reducing intraoperative image drift and mismatch. The system also visualizes intraoperative image drift and mismatch, and provides real time visual feedback to surgeons.
期刊介绍:
Evidence of surgical interventions go back to prehistoric times. Since then, the field of surgery has developed into a complex array of specialties and procedures, particularly with the advent of microsurgery, lasers and minimally invasive techniques. The advanced skills now required from surgeons has led to ever increasing specialization, though these still share important fundamental principles.
Frontiers in Surgery is the umbrella journal representing the publication interests of all surgical specialties. It is divided into several “Specialty Sections” listed below. All these sections have their own Specialty Chief Editor, Editorial Board and homepage, but all articles carry the citation Frontiers in Surgery.
Frontiers in Surgery calls upon medical professionals and scientists from all surgical specialties to publish their experimental and clinical studies in this journal. By assembling all surgical specialties, which nonetheless retain their independence, under the common umbrella of Frontiers in Surgery, a powerful publication venue is created. Since there is often overlap and common ground between the different surgical specialties, assembly of all surgical disciplines into a single journal will foster a collaborative dialogue amongst the surgical community. This means that publications, which are also of interest to other surgical specialties, will reach a wider audience and have greater impact.
The aim of this multidisciplinary journal is to create a discussion and knowledge platform of advances and research findings in surgical practice today to continuously improve clinical management of patients and foster innovation in this field.