IL-27 通过激活自噬减轻结核分枝杆菌诱导的巨噬细胞损伤和炎症。

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-10-25 DOI:10.1007/s11626-024-00989-x
Yushan Zhou, Yuxuan Zhang, Yanli Li, Liqiong Liu, Min Zhuang, Yi Xiao
{"title":"IL-27 通过激活自噬减轻结核分枝杆菌诱导的巨噬细胞损伤和炎症。","authors":"Yushan Zhou, Yuxuan Zhang, Yanli Li, Liqiong Liu, Min Zhuang, Yi Xiao","doi":"10.1007/s11626-024-00989-x","DOIUrl":null,"url":null,"abstract":"<p><p>Interleukin-27 (IL-27) is a cytokine that is reported to be highly expressed in the peripheral blood of patients with pulmonary tuberculosis (PTB). IL-27-mediated signaling pathways, which exhibit anti- Mycobacterium tuberculosis (Mtb) properties, have also been demonstrated in macrophages infected with Mtb. However, the exact mechanism remains unclear. This study aimed to clarify the potential molecular mechanisms through which IL-27 enhances macrophage resistance to Mtb infection. Both normal and PTB patients provided bronchoalveolar lavage fluid (BALF). Peripheral blood mononuclear cells (PBMCs) were isolated from healthy individuals and stimulated with 50 ng/mL macrophage-colony stimulating factor (M-CSF) to obtain monocyte-derived macrophages (MDMs). Using 100 ng/mL phorbol 12-myristate 13-acetate (PMA), THP-1 cells were induced to differentiate into THP-1-derived macrophage-like cells (TDMs). Both MDMs and TDMs were subsequently infected with the Mtb strain H37Rv and treated with 50 ng/mL IL-27 prior to infection. The damage and inflammation of macrophages were examined using flow cytometry, enzyme-linked immunosorbent assay (ELISA), and Western blotting. Patients with PTB had elevated levels of IL-27 in their BALF. Preconditioning with IL-27 was shown to reduce H37Rv-induced MDMs and TDMs apoptosis while also decreasing the levels of Cleaved Caspase-3, Bax and the proinflammatory cytokines TNF-α, IL-1β, and IL-6, promoting the expression of Bcl-2 and the anti-inflammatory factors IL-10 and IL-4. Silencing of the IL-27 receptor IL-27Ra increased macrophage damage and inflammation triggered by H37Rv. Mechanistically, IL-27 activates autophagy by inhibiting TLR4/NF-κB signaling and activating the PI3K/AKT signaling pathway, thereby inhibiting H37Rv-induced macrophage apoptosis and the inflammatory response. Our study suggests that IL-27 alleviates H37Rv-induced macrophage injury and the inflammatory response by activating autophagy and that IL-27 may be a new target for the treatment of PTB.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"IL-27 attenuated macrophage injury and inflammation induced by Mycobacterium tuberculosis by activating autophagy.\",\"authors\":\"Yushan Zhou, Yuxuan Zhang, Yanli Li, Liqiong Liu, Min Zhuang, Yi Xiao\",\"doi\":\"10.1007/s11626-024-00989-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Interleukin-27 (IL-27) is a cytokine that is reported to be highly expressed in the peripheral blood of patients with pulmonary tuberculosis (PTB). IL-27-mediated signaling pathways, which exhibit anti- Mycobacterium tuberculosis (Mtb) properties, have also been demonstrated in macrophages infected with Mtb. However, the exact mechanism remains unclear. This study aimed to clarify the potential molecular mechanisms through which IL-27 enhances macrophage resistance to Mtb infection. Both normal and PTB patients provided bronchoalveolar lavage fluid (BALF). Peripheral blood mononuclear cells (PBMCs) were isolated from healthy individuals and stimulated with 50 ng/mL macrophage-colony stimulating factor (M-CSF) to obtain monocyte-derived macrophages (MDMs). Using 100 ng/mL phorbol 12-myristate 13-acetate (PMA), THP-1 cells were induced to differentiate into THP-1-derived macrophage-like cells (TDMs). Both MDMs and TDMs were subsequently infected with the Mtb strain H37Rv and treated with 50 ng/mL IL-27 prior to infection. The damage and inflammation of macrophages were examined using flow cytometry, enzyme-linked immunosorbent assay (ELISA), and Western blotting. Patients with PTB had elevated levels of IL-27 in their BALF. Preconditioning with IL-27 was shown to reduce H37Rv-induced MDMs and TDMs apoptosis while also decreasing the levels of Cleaved Caspase-3, Bax and the proinflammatory cytokines TNF-α, IL-1β, and IL-6, promoting the expression of Bcl-2 and the anti-inflammatory factors IL-10 and IL-4. Silencing of the IL-27 receptor IL-27Ra increased macrophage damage and inflammation triggered by H37Rv. Mechanistically, IL-27 activates autophagy by inhibiting TLR4/NF-κB signaling and activating the PI3K/AKT signaling pathway, thereby inhibiting H37Rv-induced macrophage apoptosis and the inflammatory response. Our study suggests that IL-27 alleviates H37Rv-induced macrophage injury and the inflammatory response by activating autophagy and that IL-27 may be a new target for the treatment of PTB.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s11626-024-00989-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11626-024-00989-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

据报道,白细胞介素-27(IL-27)是一种在肺结核(PTB)患者外周血中高表达的细胞因子。在感染了结核分枝杆菌(Mtb)的巨噬细胞中,IL-27 介导的信号通路也表现出抗结核分枝杆菌(Mtb)的特性。然而,确切的机制仍不清楚。本研究旨在阐明IL-27增强巨噬细胞抵抗Mtb感染的潜在分子机制。正常人和肺结核患者都提供了支气管肺泡灌洗液(BALF)。从健康人身上分离出外周血单核细胞(PBMCs),并用 50 纳克/毫升巨噬细胞集落刺激因子(M-CSF)刺激以获得单核细胞衍生巨噬细胞(MDMs)。使用 100 毫微克/毫升光甘油 12-肉豆蔻酸 13-乙酸酯(PMA),诱导 THP-1 细胞分化为 THP-1 衍生的巨噬细胞样细胞(TDMs)。随后用Mtb菌株H37Rv感染MDMs和TDMs,并在感染前用50纳克/毫升IL-27处理。使用流式细胞术、酶联免疫吸附试验(ELISA)和 Western 印迹法检测了巨噬细胞的损伤和炎症情况。PTB 患者的 BALF 中 IL-27 水平升高。用 IL-27 进行预处理可减少 H37Rv 诱导的 MDMs 和 TDMs 的凋亡,同时降低裂解 Caspase-3、Bax 以及促炎细胞因子 TNF-α、IL-1β 和 IL-6 的水平,促进 Bcl-2 以及抗炎因子 IL-10 和 IL-4 的表达。抑制 IL-27 受体 IL-27Ra 会增加由 H37Rv 引发的巨噬细胞损伤和炎症。从机理上讲,IL-27通过抑制TLR4/NF-κB信号传导和激活PI3K/AKT信号通路来激活自噬,从而抑制H37Rv诱导的巨噬细胞凋亡和炎症反应。我们的研究表明,IL-27通过激活自噬减轻了H37Rv诱导的巨噬细胞损伤和炎症反应,IL-27可能是治疗PTB的一个新靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IL-27 attenuated macrophage injury and inflammation induced by Mycobacterium tuberculosis by activating autophagy.

Interleukin-27 (IL-27) is a cytokine that is reported to be highly expressed in the peripheral blood of patients with pulmonary tuberculosis (PTB). IL-27-mediated signaling pathways, which exhibit anti- Mycobacterium tuberculosis (Mtb) properties, have also been demonstrated in macrophages infected with Mtb. However, the exact mechanism remains unclear. This study aimed to clarify the potential molecular mechanisms through which IL-27 enhances macrophage resistance to Mtb infection. Both normal and PTB patients provided bronchoalveolar lavage fluid (BALF). Peripheral blood mononuclear cells (PBMCs) were isolated from healthy individuals and stimulated with 50 ng/mL macrophage-colony stimulating factor (M-CSF) to obtain monocyte-derived macrophages (MDMs). Using 100 ng/mL phorbol 12-myristate 13-acetate (PMA), THP-1 cells were induced to differentiate into THP-1-derived macrophage-like cells (TDMs). Both MDMs and TDMs were subsequently infected with the Mtb strain H37Rv and treated with 50 ng/mL IL-27 prior to infection. The damage and inflammation of macrophages were examined using flow cytometry, enzyme-linked immunosorbent assay (ELISA), and Western blotting. Patients with PTB had elevated levels of IL-27 in their BALF. Preconditioning with IL-27 was shown to reduce H37Rv-induced MDMs and TDMs apoptosis while also decreasing the levels of Cleaved Caspase-3, Bax and the proinflammatory cytokines TNF-α, IL-1β, and IL-6, promoting the expression of Bcl-2 and the anti-inflammatory factors IL-10 and IL-4. Silencing of the IL-27 receptor IL-27Ra increased macrophage damage and inflammation triggered by H37Rv. Mechanistically, IL-27 activates autophagy by inhibiting TLR4/NF-κB signaling and activating the PI3K/AKT signaling pathway, thereby inhibiting H37Rv-induced macrophage apoptosis and the inflammatory response. Our study suggests that IL-27 alleviates H37Rv-induced macrophage injury and the inflammatory response by activating autophagy and that IL-27 may be a new target for the treatment of PTB.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1