{"title":"用玉米秸秆饲养黑兵蝇幼虫以及肠道微生物对玉米秸秆消化的帮助","authors":"Xifeng Wang, Xiangru Tian, Zhi Liu, Zhihua Liu, Shuying Shang, Haifeng Li, Jianhang Qu, Pengxiao Chen","doi":"10.3390/insects15100734","DOIUrl":null,"url":null,"abstract":"<p><p>Corn straw is considered a renewable biomass energy source, and its unreasonable disposal leads to resource waste and environmental pollution. Black soldier fly (<i>Hermetia illucens</i> L.) larvae (BSFL) facilitate the bioconversion of various types of organic wastes. In this study, we found that 88% of BSFL survived, and 37.4% of corn straw was digested after 14 days of feeding with corn straw. Contrary to expectations, the pretreatment of corn straw with alkaline hydrogen peroxide did not promote its digestion but rather reduced the growth and survival rates of BSFL. <i>Acinetobacter</i>, <i>Dysgonomonas</i>, and unclassified <i>Enterobacteriaceae</i> were the abundant genera in the BSFL gut fed with corn straw. Compared with the standard diet, the relative abundances of carbohydrate metabolism genes, such as the gene abundances of β-glucosidase and α-glucosidase, were higher with corn straw as the substrate. These results suggested that the gut microbial community could regulate suitable and functional microorganisms in response to the substrates. Furthermore, four cellulase-producing strains, namely <i>Klebsiella pneumoniae</i>, <i>Proteus mirabilis</i>, <i>Klebsiella oxytoca</i>, and <i>Providencia rettgeri</i>, were isolated from the guts of corn straw BSFL. These four strains helped increase the conversion rates of corn straw, the weights of BSFL, and survival rates. In summary, we reared BSFL with corn straw and discovered the functions of gut microorganisms in adapting to the substrates. We also isolated four cellulase-producing strains from the BSFL guts and declared the benefits of BSFL digesting corn straw.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508837/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rearing of Black Soldier Fly Larvae with Corn Straw and the Assistance of Gut Microorganisms in Digesting Corn Straw.\",\"authors\":\"Xifeng Wang, Xiangru Tian, Zhi Liu, Zhihua Liu, Shuying Shang, Haifeng Li, Jianhang Qu, Pengxiao Chen\",\"doi\":\"10.3390/insects15100734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Corn straw is considered a renewable biomass energy source, and its unreasonable disposal leads to resource waste and environmental pollution. Black soldier fly (<i>Hermetia illucens</i> L.) larvae (BSFL) facilitate the bioconversion of various types of organic wastes. In this study, we found that 88% of BSFL survived, and 37.4% of corn straw was digested after 14 days of feeding with corn straw. Contrary to expectations, the pretreatment of corn straw with alkaline hydrogen peroxide did not promote its digestion but rather reduced the growth and survival rates of BSFL. <i>Acinetobacter</i>, <i>Dysgonomonas</i>, and unclassified <i>Enterobacteriaceae</i> were the abundant genera in the BSFL gut fed with corn straw. Compared with the standard diet, the relative abundances of carbohydrate metabolism genes, such as the gene abundances of β-glucosidase and α-glucosidase, were higher with corn straw as the substrate. These results suggested that the gut microbial community could regulate suitable and functional microorganisms in response to the substrates. Furthermore, four cellulase-producing strains, namely <i>Klebsiella pneumoniae</i>, <i>Proteus mirabilis</i>, <i>Klebsiella oxytoca</i>, and <i>Providencia rettgeri</i>, were isolated from the guts of corn straw BSFL. These four strains helped increase the conversion rates of corn straw, the weights of BSFL, and survival rates. In summary, we reared BSFL with corn straw and discovered the functions of gut microorganisms in adapting to the substrates. We also isolated four cellulase-producing strains from the BSFL guts and declared the benefits of BSFL digesting corn straw.</p>\",\"PeriodicalId\":13642,\"journal\":{\"name\":\"Insects\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508837/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insects\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.3390/insects15100734\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects15100734","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
Rearing of Black Soldier Fly Larvae with Corn Straw and the Assistance of Gut Microorganisms in Digesting Corn Straw.
Corn straw is considered a renewable biomass energy source, and its unreasonable disposal leads to resource waste and environmental pollution. Black soldier fly (Hermetia illucens L.) larvae (BSFL) facilitate the bioconversion of various types of organic wastes. In this study, we found that 88% of BSFL survived, and 37.4% of corn straw was digested after 14 days of feeding with corn straw. Contrary to expectations, the pretreatment of corn straw with alkaline hydrogen peroxide did not promote its digestion but rather reduced the growth and survival rates of BSFL. Acinetobacter, Dysgonomonas, and unclassified Enterobacteriaceae were the abundant genera in the BSFL gut fed with corn straw. Compared with the standard diet, the relative abundances of carbohydrate metabolism genes, such as the gene abundances of β-glucosidase and α-glucosidase, were higher with corn straw as the substrate. These results suggested that the gut microbial community could regulate suitable and functional microorganisms in response to the substrates. Furthermore, four cellulase-producing strains, namely Klebsiella pneumoniae, Proteus mirabilis, Klebsiella oxytoca, and Providencia rettgeri, were isolated from the guts of corn straw BSFL. These four strains helped increase the conversion rates of corn straw, the weights of BSFL, and survival rates. In summary, we reared BSFL with corn straw and discovered the functions of gut microorganisms in adapting to the substrates. We also isolated four cellulase-producing strains from the BSFL guts and declared the benefits of BSFL digesting corn straw.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.