Owen M Edwards, Lu Zhai, Michael S Reichert, Ciaran A Shaughnessy, Logan Ozment, Bo Zhang
{"title":"一种两栖动物的生理和形态特征影响其当代分布范围的扩大及其对物种分布模型的影响。","authors":"Owen M Edwards, Lu Zhai, Michael S Reichert, Ciaran A Shaughnessy, Logan Ozment, Bo Zhang","doi":"10.1111/1365-2656.14212","DOIUrl":null,"url":null,"abstract":"<p><p>Species range shifts due to climate alterations have been increasingly well-documented. Although amphibians are one of the most sensitive groups of animals to environmental perturbations due to climate change, almost no studies have offered evidence of poleward distribution shifts in this taxon in response to climate warming. Range shifts would be facilitated by variation in traits associated with the ability of species to persist and/or shift their range in the face of climate change, but the extent and consequences of intraspecific variation in these traits is unclear. We studied the role of intraspecific variation in the ongoing range shift of green treefrogs (Hyla cinerea) in response to climate change. We explored factors that are often associated with range shifts to test the hypothesis that there are differences in these traits between recently range-expanded and nearby historical populations. We then tested the consequences of intraspecific variation for modelling climate-induced range shifts by comparing species distribution models (SDMs) that used as input either data from the entire species range or separate inputs from 'subpopulations' corresponding to the historical range or the recently expanded range. We expected that building a separate SDM for each population would more accurately characterize the species range if historical and expanded populations differed in traits related to their response to climate. We found that critical thermal minimum decreased and thermal breadth increased with latitude, but the effect of latitude was significantly stronger for expanded populations compared to historical populations. Additionally, we found that individuals from expanded populations had longer leg lengths when compared to their historical counterparts. Finally, we found higher model accuracy for one of the population-level SDMs than the species-level SDM. Our results suggest that thermal tolerance and dispersal morphologies are associated with amphibian distributional shifts as these characteristics appear to facilitate rapid range expansion of a native anuran. Additionally, our modelling results emphasize that SDM accuracy could be improved by dividing a species range to consider potential differences in traits associated with climate responses. Future research should identify the mechanisms underlying intraspecific variation along climate gradients to continue improving SDM prediction of range shifts under climate change.</p>","PeriodicalId":14934,"journal":{"name":"Journal of Animal Ecology","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physiological and morphological traits affect contemporary range expansion and implications for species distribution modelling in an amphibian species.\",\"authors\":\"Owen M Edwards, Lu Zhai, Michael S Reichert, Ciaran A Shaughnessy, Logan Ozment, Bo Zhang\",\"doi\":\"10.1111/1365-2656.14212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Species range shifts due to climate alterations have been increasingly well-documented. Although amphibians are one of the most sensitive groups of animals to environmental perturbations due to climate change, almost no studies have offered evidence of poleward distribution shifts in this taxon in response to climate warming. Range shifts would be facilitated by variation in traits associated with the ability of species to persist and/or shift their range in the face of climate change, but the extent and consequences of intraspecific variation in these traits is unclear. We studied the role of intraspecific variation in the ongoing range shift of green treefrogs (Hyla cinerea) in response to climate change. We explored factors that are often associated with range shifts to test the hypothesis that there are differences in these traits between recently range-expanded and nearby historical populations. We then tested the consequences of intraspecific variation for modelling climate-induced range shifts by comparing species distribution models (SDMs) that used as input either data from the entire species range or separate inputs from 'subpopulations' corresponding to the historical range or the recently expanded range. We expected that building a separate SDM for each population would more accurately characterize the species range if historical and expanded populations differed in traits related to their response to climate. We found that critical thermal minimum decreased and thermal breadth increased with latitude, but the effect of latitude was significantly stronger for expanded populations compared to historical populations. Additionally, we found that individuals from expanded populations had longer leg lengths when compared to their historical counterparts. Finally, we found higher model accuracy for one of the population-level SDMs than the species-level SDM. Our results suggest that thermal tolerance and dispersal morphologies are associated with amphibian distributional shifts as these characteristics appear to facilitate rapid range expansion of a native anuran. Additionally, our modelling results emphasize that SDM accuracy could be improved by dividing a species range to consider potential differences in traits associated with climate responses. Future research should identify the mechanisms underlying intraspecific variation along climate gradients to continue improving SDM prediction of range shifts under climate change.</p>\",\"PeriodicalId\":14934,\"journal\":{\"name\":\"Journal of Animal Ecology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Animal Ecology\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1111/1365-2656.14212\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Animal Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/1365-2656.14212","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Physiological and morphological traits affect contemporary range expansion and implications for species distribution modelling in an amphibian species.
Species range shifts due to climate alterations have been increasingly well-documented. Although amphibians are one of the most sensitive groups of animals to environmental perturbations due to climate change, almost no studies have offered evidence of poleward distribution shifts in this taxon in response to climate warming. Range shifts would be facilitated by variation in traits associated with the ability of species to persist and/or shift their range in the face of climate change, but the extent and consequences of intraspecific variation in these traits is unclear. We studied the role of intraspecific variation in the ongoing range shift of green treefrogs (Hyla cinerea) in response to climate change. We explored factors that are often associated with range shifts to test the hypothesis that there are differences in these traits between recently range-expanded and nearby historical populations. We then tested the consequences of intraspecific variation for modelling climate-induced range shifts by comparing species distribution models (SDMs) that used as input either data from the entire species range or separate inputs from 'subpopulations' corresponding to the historical range or the recently expanded range. We expected that building a separate SDM for each population would more accurately characterize the species range if historical and expanded populations differed in traits related to their response to climate. We found that critical thermal minimum decreased and thermal breadth increased with latitude, but the effect of latitude was significantly stronger for expanded populations compared to historical populations. Additionally, we found that individuals from expanded populations had longer leg lengths when compared to their historical counterparts. Finally, we found higher model accuracy for one of the population-level SDMs than the species-level SDM. Our results suggest that thermal tolerance and dispersal morphologies are associated with amphibian distributional shifts as these characteristics appear to facilitate rapid range expansion of a native anuran. Additionally, our modelling results emphasize that SDM accuracy could be improved by dividing a species range to consider potential differences in traits associated with climate responses. Future research should identify the mechanisms underlying intraspecific variation along climate gradients to continue improving SDM prediction of range shifts under climate change.
期刊介绍:
Journal of Animal Ecology publishes the best original research on all aspects of animal ecology, ranging from the molecular to the ecosystem level. These may be field, laboratory and theoretical studies utilising terrestrial, freshwater or marine systems.