不同的化学结构能抑制 CEMIP 透明质酸酶,促进少突胶质祖细胞成熟。

IF 4 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biological Chemistry Pub Date : 2024-10-24 DOI:10.1016/j.jbc.2024.107916
Alec Peters, Fatima Banine, Kanon Yasuhara, Angela Hoffman, Basappa, Prashant K Metri, Lily Gunning, Ava Huffman, Jake VanCampen, Clinton C Shock, Stephen A Back, Larry S Sherman
{"title":"不同的化学结构能抑制 CEMIP 透明质酸酶,促进少突胶质祖细胞成熟。","authors":"Alec Peters, Fatima Banine, Kanon Yasuhara, Angela Hoffman, Basappa, Prashant K Metri, Lily Gunning, Ava Huffman, Jake VanCampen, Clinton C Shock, Stephen A Back, Larry S Sherman","doi":"10.1016/j.jbc.2024.107916","DOIUrl":null,"url":null,"abstract":"<p><p>Growing evidence supports pathogenic roles for chronically elevated hyaluronidase activity in numerous conditions. Elevated expression of one such hyaluronidase, the Cell Migration Inducing and hyaluronan binding Protein (CEMIP), has been implicated in the pathogenesis and progression of several cancers as well as demyelinating diseases in the central nervous system (CNS). Developing effective and selective CEMIP inhibitors could therefore have efficacy in treating a variety of conditions where CEMIP is chronically elevated. Using two distinct screens for novel hyaluronidase inhibitors, we identified two synthetic thiocarbamates and one plant-derived flavonoid, sulfuretin, that effectively blocked CEMIP activity in live cells, including a tumorigenic cell line and primary cultures of oligodendrocyte progenitor cells (OPCs). None of these agents influenced cell proliferation, but they had differential dose-dependent and cell type-specific effects on cell survival. Furthermore, we found that each of these agents could promote oligodendrocyte maturation by OPCs in the presence of high molecular weight (>2 Mda) hyaluronan, the accumulation of which is linked to the inhibition of OPC maturation and remyelination failure in demyelinating diseases. These findings indicate that CEMIP can be inhibited through distinct chemical interactions and that CEMIP inhibitors have potential efficacy for treating demyelinating diseases or other conditions where CEMIP is elevated.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"107916"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distinct chemical structures inhibit the CEMIP hyaluronidase and promote oligodendrocyte progenitor cell maturation.\",\"authors\":\"Alec Peters, Fatima Banine, Kanon Yasuhara, Angela Hoffman, Basappa, Prashant K Metri, Lily Gunning, Ava Huffman, Jake VanCampen, Clinton C Shock, Stephen A Back, Larry S Sherman\",\"doi\":\"10.1016/j.jbc.2024.107916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Growing evidence supports pathogenic roles for chronically elevated hyaluronidase activity in numerous conditions. Elevated expression of one such hyaluronidase, the Cell Migration Inducing and hyaluronan binding Protein (CEMIP), has been implicated in the pathogenesis and progression of several cancers as well as demyelinating diseases in the central nervous system (CNS). Developing effective and selective CEMIP inhibitors could therefore have efficacy in treating a variety of conditions where CEMIP is chronically elevated. Using two distinct screens for novel hyaluronidase inhibitors, we identified two synthetic thiocarbamates and one plant-derived flavonoid, sulfuretin, that effectively blocked CEMIP activity in live cells, including a tumorigenic cell line and primary cultures of oligodendrocyte progenitor cells (OPCs). None of these agents influenced cell proliferation, but they had differential dose-dependent and cell type-specific effects on cell survival. Furthermore, we found that each of these agents could promote oligodendrocyte maturation by OPCs in the presence of high molecular weight (>2 Mda) hyaluronan, the accumulation of which is linked to the inhibition of OPC maturation and remyelination failure in demyelinating diseases. These findings indicate that CEMIP can be inhibited through distinct chemical interactions and that CEMIP inhibitors have potential efficacy for treating demyelinating diseases or other conditions where CEMIP is elevated.</p>\",\"PeriodicalId\":15140,\"journal\":{\"name\":\"Journal of Biological Chemistry\",\"volume\":\" \",\"pages\":\"107916\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jbc.2024.107916\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2024.107916","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

越来越多的证据表明,长期升高的透明质酸酶活性在许多疾病中都具有致病作用。其中一种透明质酸酶--细胞迁移诱导和透明质酸结合蛋白(CEMIP)--的表达升高与多种癌症以及中枢神经系统(CNS)脱髓鞘疾病的发病和进展有关。因此,开发有效的选择性 CEMIP 抑制剂可有效治疗 CEMIP 长期升高的各种疾病。通过对新型透明质酸酶抑制剂进行两次不同的筛选,我们发现了两种合成的硫代氨基甲酸酯类药物和一种植物来源的黄酮类药物磺胺黄酮,它们能有效阻断活细胞中 CEMIP 的活性,包括致瘤细胞系和少突胶质祖细胞(OPC)的原代培养物。这些药物都不会影响细胞增殖,但它们对细胞存活有不同的剂量依赖性和细胞类型特异性影响。此外,我们还发现,在高分子量(>2 Mda)透明质酸存在的情况下,这些制剂都能促进少突胶质细胞的成熟,而高分子量透明质酸的积累与抑制少突胶质细胞成熟和脱髓鞘疾病的再髓鞘化失败有关。这些研究结果表明,CEMIP可通过不同的化学作用被抑制,CEMIP抑制剂对治疗脱髓鞘疾病或CEMIP升高的其他病症具有潜在疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distinct chemical structures inhibit the CEMIP hyaluronidase and promote oligodendrocyte progenitor cell maturation.

Growing evidence supports pathogenic roles for chronically elevated hyaluronidase activity in numerous conditions. Elevated expression of one such hyaluronidase, the Cell Migration Inducing and hyaluronan binding Protein (CEMIP), has been implicated in the pathogenesis and progression of several cancers as well as demyelinating diseases in the central nervous system (CNS). Developing effective and selective CEMIP inhibitors could therefore have efficacy in treating a variety of conditions where CEMIP is chronically elevated. Using two distinct screens for novel hyaluronidase inhibitors, we identified two synthetic thiocarbamates and one plant-derived flavonoid, sulfuretin, that effectively blocked CEMIP activity in live cells, including a tumorigenic cell line and primary cultures of oligodendrocyte progenitor cells (OPCs). None of these agents influenced cell proliferation, but they had differential dose-dependent and cell type-specific effects on cell survival. Furthermore, we found that each of these agents could promote oligodendrocyte maturation by OPCs in the presence of high molecular weight (>2 Mda) hyaluronan, the accumulation of which is linked to the inhibition of OPC maturation and remyelination failure in demyelinating diseases. These findings indicate that CEMIP can be inhibited through distinct chemical interactions and that CEMIP inhibitors have potential efficacy for treating demyelinating diseases or other conditions where CEMIP is elevated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Chemistry
Journal of Biological Chemistry Biochemistry, Genetics and Molecular Biology-Biochemistry
自引率
4.20%
发文量
1233
期刊介绍: The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.
期刊最新文献
Reduced S-nitrosylation of TGFβ1 elevates its binding affinity towards the receptor and promotes fibrogenic signaling in the breast. The acetylglucosaminyltransferase GnT-Ⅲ regulates erythroid differentiation through ERK/MAPK signaling. PARP14 is a writer, reader, and eraser of mono-ADP-ribosylation. Biophysical characterization of the dystrophin C-terminal domain: Dystrophin interacts differentially with dystrobrevin isoforms. The CTR hydrophobic residues of Nem1 catalytic subunit are required to form a protein phosphatase complex with Spo7 to activate yeast Pah1 PA phosphatase.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1