Min Wang, Zhuangli Zhang, Qianqian Li, Ruijun Liu, Jianbo Li, Xiuxia Wang
{"title":"具有近红外触发一氧化氮释放功能的多功能纳米平台可增强肿瘤的铁凋亡。","authors":"Min Wang, Zhuangli Zhang, Qianqian Li, Ruijun Liu, Jianbo Li, Xiuxia Wang","doi":"10.1186/s12951-024-02942-2","DOIUrl":null,"url":null,"abstract":"<p><p>Ferroptosis has emerged as a promising strategy for cancer treatment. Nevertheless, the efficiency of ferroptosis-mediated therapy remains a challenge due to high glutathione (GSH) levels and insufficient endogenous hydrogen peroxide in the tumor microenvironment. Herein, we presented a nitric-oxide (NO) boost-GSH depletion strategy for enhanced ferroptosis therapy through a multifunctional nanoplatform with near-infrared (NIR) triggered NO release. The nanoplatform, IS@ATF, was designed that self-assembled by loading the NO donor L-arginine (L-Arg), ferroptosis inducer sorafenib (SRF), and indocyanine green (ICG) onto tannic acid (TA)-Fe<sup>3+</sup>‒metal-phenolic networks (MPNs) modified with hydroxyethyl starch. Inside the tumor, SRF could inhibit GSH biosynthesis, impair the activation of glutathione peroxidase 4, and disrupt the ferroptosis defensive system. In conjunction with TA-Fe<sup>3+</sup>‒MPNs, which has cascaded Fenton catalytic activity, it could navigate the lethal ferroptosis to cancer cells. Upon NIR laser irradiation, the ICG-generated ROS oxidated L-Arg to a substantial quantity of NO, which further depleted the intracellular GSH and caused LPO accumulation, enhancing cell ferroptosis. Moreover, ICG also serves as a photothermal agent that can produce hyperthermia when exposed to irradiation, further potentiating ferroptosis therapy. In addition, the nanoplatform showed significantly improved tumor therapeutic efficacy and anti-metastasis efficiency. This work thus demonstrated that utilizing NO boost-GSH depletion to enhance ferroptosis induction is a feasible and promising strategy for cancer treatment.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"656"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515185/pdf/","citationCount":"0","resultStr":"{\"title\":\"Multifunctional nanoplatform with near-infrared triggered nitric-oxide release for enhanced tumor ferroptosis.\",\"authors\":\"Min Wang, Zhuangli Zhang, Qianqian Li, Ruijun Liu, Jianbo Li, Xiuxia Wang\",\"doi\":\"10.1186/s12951-024-02942-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ferroptosis has emerged as a promising strategy for cancer treatment. Nevertheless, the efficiency of ferroptosis-mediated therapy remains a challenge due to high glutathione (GSH) levels and insufficient endogenous hydrogen peroxide in the tumor microenvironment. Herein, we presented a nitric-oxide (NO) boost-GSH depletion strategy for enhanced ferroptosis therapy through a multifunctional nanoplatform with near-infrared (NIR) triggered NO release. The nanoplatform, IS@ATF, was designed that self-assembled by loading the NO donor L-arginine (L-Arg), ferroptosis inducer sorafenib (SRF), and indocyanine green (ICG) onto tannic acid (TA)-Fe<sup>3+</sup>‒metal-phenolic networks (MPNs) modified with hydroxyethyl starch. Inside the tumor, SRF could inhibit GSH biosynthesis, impair the activation of glutathione peroxidase 4, and disrupt the ferroptosis defensive system. In conjunction with TA-Fe<sup>3+</sup>‒MPNs, which has cascaded Fenton catalytic activity, it could navigate the lethal ferroptosis to cancer cells. Upon NIR laser irradiation, the ICG-generated ROS oxidated L-Arg to a substantial quantity of NO, which further depleted the intracellular GSH and caused LPO accumulation, enhancing cell ferroptosis. Moreover, ICG also serves as a photothermal agent that can produce hyperthermia when exposed to irradiation, further potentiating ferroptosis therapy. In addition, the nanoplatform showed significantly improved tumor therapeutic efficacy and anti-metastasis efficiency. This work thus demonstrated that utilizing NO boost-GSH depletion to enhance ferroptosis induction is a feasible and promising strategy for cancer treatment.</p>\",\"PeriodicalId\":16383,\"journal\":{\"name\":\"Journal of Nanobiotechnology\",\"volume\":\"22 1\",\"pages\":\"656\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515185/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanobiotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s12951-024-02942-2\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02942-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Multifunctional nanoplatform with near-infrared triggered nitric-oxide release for enhanced tumor ferroptosis.
Ferroptosis has emerged as a promising strategy for cancer treatment. Nevertheless, the efficiency of ferroptosis-mediated therapy remains a challenge due to high glutathione (GSH) levels and insufficient endogenous hydrogen peroxide in the tumor microenvironment. Herein, we presented a nitric-oxide (NO) boost-GSH depletion strategy for enhanced ferroptosis therapy through a multifunctional nanoplatform with near-infrared (NIR) triggered NO release. The nanoplatform, IS@ATF, was designed that self-assembled by loading the NO donor L-arginine (L-Arg), ferroptosis inducer sorafenib (SRF), and indocyanine green (ICG) onto tannic acid (TA)-Fe3+‒metal-phenolic networks (MPNs) modified with hydroxyethyl starch. Inside the tumor, SRF could inhibit GSH biosynthesis, impair the activation of glutathione peroxidase 4, and disrupt the ferroptosis defensive system. In conjunction with TA-Fe3+‒MPNs, which has cascaded Fenton catalytic activity, it could navigate the lethal ferroptosis to cancer cells. Upon NIR laser irradiation, the ICG-generated ROS oxidated L-Arg to a substantial quantity of NO, which further depleted the intracellular GSH and caused LPO accumulation, enhancing cell ferroptosis. Moreover, ICG also serves as a photothermal agent that can produce hyperthermia when exposed to irradiation, further potentiating ferroptosis therapy. In addition, the nanoplatform showed significantly improved tumor therapeutic efficacy and anti-metastasis efficiency. This work thus demonstrated that utilizing NO boost-GSH depletion to enhance ferroptosis induction is a feasible and promising strategy for cancer treatment.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.