Nathan Ponzar, Mathivanan Chinnaraj, Anna Pagotto, Vincenzo De Filippis, Robert Flaumenhaft, Nicola Pozzi
{"title":"异位抗血栓化合物激活和抑制蛋白二硫异构酶的机制基础","authors":"Nathan Ponzar, Mathivanan Chinnaraj, Anna Pagotto, Vincenzo De Filippis, Robert Flaumenhaft, Nicola Pozzi","doi":"10.1016/j.jtha.2024.09.036","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Protein Disulfide Isomerase (PDI) is a promising target for combating thrombosis. Extensive research over the past decade has identified numerous PDI-targeting compounds. However, limited information exists regarding how these compounds control PDI activity, which complicates further development.</p><p><strong>Objectives: </strong>To define the mechanism of action of two allosteric antithrombotic compounds of therapeutic interest, quercetin-3-O-rutinoside and bepristat-2a.</p><p><strong>Methods: </strong>A multi-pronged approach that integrates single-molecule spectroscopy, steady-state kinetics, single turnover kinetics, and site-specific mutagenesis.</p><p><strong>Results: </strong>PDI is a thiol-isomerase consisting of two catalytic a-domains and two inactive b-domains arranged in the order a-b-b'-a'. The active sites CGHC are located in the a and a' domains. The binding site of quercetin-3-O-rutinoside and bepristat-2a is in the b' domain. Using a library of nine FRET sensors, we show that quercetin-3-O-rutinoside and bepristat-2a globally alter PDI structure and dynamics, leading to ligand-specific modifications of its shape and reorientation of the active sites. Combined with enzyme kinetics and mutagenesis of the active sites, FRET data reveal that binding of quercetin-3-O-rutinoside results in a twisted enzyme with reduced affinity for the substrate. In contrast, bepristat-2a promotes a more compact conformation of PDI, in which a greater enzymatic activity is achieved by accelerating the nucleophilic step of the a domain, leading to faster formation of the covalent enzyme-substrate complex.</p><p><strong>Conclusions: </strong>This work reveals the mechanistic basis underlying PDI regulation by antithrombotic compounds quercetin-3-O-rutinoside and bepristat-2a, and points to novel strategies for furthering the development of PDI-targeting compounds into drugs.</p>","PeriodicalId":17326,"journal":{"name":"Journal of Thrombosis and Haemostasis","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic basis of activation and inhibition of Protein Disulfide Isomerase by allosteric antithrombotic compounds.\",\"authors\":\"Nathan Ponzar, Mathivanan Chinnaraj, Anna Pagotto, Vincenzo De Filippis, Robert Flaumenhaft, Nicola Pozzi\",\"doi\":\"10.1016/j.jtha.2024.09.036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Protein Disulfide Isomerase (PDI) is a promising target for combating thrombosis. Extensive research over the past decade has identified numerous PDI-targeting compounds. However, limited information exists regarding how these compounds control PDI activity, which complicates further development.</p><p><strong>Objectives: </strong>To define the mechanism of action of two allosteric antithrombotic compounds of therapeutic interest, quercetin-3-O-rutinoside and bepristat-2a.</p><p><strong>Methods: </strong>A multi-pronged approach that integrates single-molecule spectroscopy, steady-state kinetics, single turnover kinetics, and site-specific mutagenesis.</p><p><strong>Results: </strong>PDI is a thiol-isomerase consisting of two catalytic a-domains and two inactive b-domains arranged in the order a-b-b'-a'. The active sites CGHC are located in the a and a' domains. The binding site of quercetin-3-O-rutinoside and bepristat-2a is in the b' domain. Using a library of nine FRET sensors, we show that quercetin-3-O-rutinoside and bepristat-2a globally alter PDI structure and dynamics, leading to ligand-specific modifications of its shape and reorientation of the active sites. Combined with enzyme kinetics and mutagenesis of the active sites, FRET data reveal that binding of quercetin-3-O-rutinoside results in a twisted enzyme with reduced affinity for the substrate. In contrast, bepristat-2a promotes a more compact conformation of PDI, in which a greater enzymatic activity is achieved by accelerating the nucleophilic step of the a domain, leading to faster formation of the covalent enzyme-substrate complex.</p><p><strong>Conclusions: </strong>This work reveals the mechanistic basis underlying PDI regulation by antithrombotic compounds quercetin-3-O-rutinoside and bepristat-2a, and points to novel strategies for furthering the development of PDI-targeting compounds into drugs.</p>\",\"PeriodicalId\":17326,\"journal\":{\"name\":\"Journal of Thrombosis and Haemostasis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thrombosis and Haemostasis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jtha.2024.09.036\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thrombosis and Haemostasis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jtha.2024.09.036","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Mechanistic basis of activation and inhibition of Protein Disulfide Isomerase by allosteric antithrombotic compounds.
Background: Protein Disulfide Isomerase (PDI) is a promising target for combating thrombosis. Extensive research over the past decade has identified numerous PDI-targeting compounds. However, limited information exists regarding how these compounds control PDI activity, which complicates further development.
Objectives: To define the mechanism of action of two allosteric antithrombotic compounds of therapeutic interest, quercetin-3-O-rutinoside and bepristat-2a.
Methods: A multi-pronged approach that integrates single-molecule spectroscopy, steady-state kinetics, single turnover kinetics, and site-specific mutagenesis.
Results: PDI is a thiol-isomerase consisting of two catalytic a-domains and two inactive b-domains arranged in the order a-b-b'-a'. The active sites CGHC are located in the a and a' domains. The binding site of quercetin-3-O-rutinoside and bepristat-2a is in the b' domain. Using a library of nine FRET sensors, we show that quercetin-3-O-rutinoside and bepristat-2a globally alter PDI structure and dynamics, leading to ligand-specific modifications of its shape and reorientation of the active sites. Combined with enzyme kinetics and mutagenesis of the active sites, FRET data reveal that binding of quercetin-3-O-rutinoside results in a twisted enzyme with reduced affinity for the substrate. In contrast, bepristat-2a promotes a more compact conformation of PDI, in which a greater enzymatic activity is achieved by accelerating the nucleophilic step of the a domain, leading to faster formation of the covalent enzyme-substrate complex.
Conclusions: This work reveals the mechanistic basis underlying PDI regulation by antithrombotic compounds quercetin-3-O-rutinoside and bepristat-2a, and points to novel strategies for furthering the development of PDI-targeting compounds into drugs.
期刊介绍:
The Journal of Thrombosis and Haemostasis (JTH) serves as the official journal of the International Society on Thrombosis and Haemostasis. It is dedicated to advancing science related to thrombosis, bleeding disorders, and vascular biology through the dissemination and exchange of information and ideas within the global research community.
Types of Publications:
The journal publishes a variety of content, including:
Original research reports
State-of-the-art reviews
Brief reports
Case reports
Invited commentaries on publications in the Journal
Forum articles
Correspondence
Announcements
Scope of Contributions:
Editors invite contributions from both fundamental and clinical domains. These include:
Basic manuscripts on blood coagulation and fibrinolysis
Studies on proteins and reactions related to thrombosis and haemostasis
Research on blood platelets and their interactions with other biological systems, such as the vessel wall, blood cells, and invading organisms
Clinical manuscripts covering various topics including venous thrombosis, arterial disease, hemophilia, bleeding disorders, and platelet diseases
Clinical manuscripts may encompass etiology, diagnostics, prognosis, prevention, and treatment strategies.