SARS-CoV-2 NSP6 可通过 sigma-1 受体减少自噬体大小并影响病毒复制。

IF 4 2区 医学 Q2 VIROLOGY Journal of Virology Pub Date : 2024-11-19 Epub Date: 2024-10-24 DOI:10.1128/jvi.00754-24
Cuiling Zhang, Qiwei Jiang, Zirui Liu, Nan Li, Zhuo Hao, Gaojie Song, Dapeng Li, Minghua Chen, Lisen Lin, Yan Liu, Xiao Li, Chao Shang, Yiquan Li
{"title":"SARS-CoV-2 NSP6 可通过 sigma-1 受体减少自噬体大小并影响病毒复制。","authors":"Cuiling Zhang, Qiwei Jiang, Zirui Liu, Nan Li, Zhuo Hao, Gaojie Song, Dapeng Li, Minghua Chen, Lisen Lin, Yan Liu, Xiao Li, Chao Shang, Yiquan Li","doi":"10.1128/jvi.00754-24","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy is a cellular self-defense mechanism by which cells can kill invading pathogenic microorganisms and increase the presentation of components of pathogens as antigens. Contrarily, pathogens can utilize autophagy to enhance their own replication. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP6 can interact with ATPase proton pump component to inhibit lysosomal acidification, which was implicated in the autophagy process. However, research on how SARS-CoV-2 NSP6 affected autophagy, and its impact on virus replication is still lacking. Coronavirus NSP6 has been reported to promote coronavirus replication by limiting autophagosome expansion. However, this finding has not been confirmed in coronavirus disease 2019 (COVID-19). We investigated the effect of NSP6 protein on autophagosomes in different mutant strains of SARS-CoV-2 and revealed that the size of autophagosomes was reduced by NSP6 of the wild-type and Delta variant of SARS-CoV-2. In addition, we found that SARS-CoV-2 NSP6 localized to the lysosome and had an inhibitory effect on the binding of autophagosomes to the lysosome, which blocked the autophagy flux; this may be related to endoplasmic reticulum (ER)-related pathways. We also found that sigma-1 receptor (SIGMAR1) knock out (KO) reversed NSP6-induced autophagosome abnormality and resisted SARS-CoV-2 infection, which responds to the fact that SIGMAR1 is likely to be used as a potential target for the treatment of SARS-CoV-2 infection. In summary, we have provided a preliminary explanation of the effects on autophagy of the SARS-CoV-2 NSP6 protein from the pre-autophagic and late stages, and also found that SIGMAR1 is likely to be used as a potential target for SARS-CoV-2 therapy to develop relevant drugs.</p><p><strong>Importance: </strong>We have provided a preliminary explanation of the effects on autophagy of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) non-structure protein 6 from the pre-autophagic and late stages, and also found that sigma-1 receptor is likely to be used as a potential target for SARS-CoV-2 therapy to develop relevant drugs.</p>","PeriodicalId":17583,"journal":{"name":"Journal of Virology","volume":" ","pages":"e0075424"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575221/pdf/","citationCount":"0","resultStr":"{\"title\":\"SARS-CoV-2 NSP6 reduces autophagosome size and affects viral replication via sigma-1 receptor.\",\"authors\":\"Cuiling Zhang, Qiwei Jiang, Zirui Liu, Nan Li, Zhuo Hao, Gaojie Song, Dapeng Li, Minghua Chen, Lisen Lin, Yan Liu, Xiao Li, Chao Shang, Yiquan Li\",\"doi\":\"10.1128/jvi.00754-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Autophagy is a cellular self-defense mechanism by which cells can kill invading pathogenic microorganisms and increase the presentation of components of pathogens as antigens. Contrarily, pathogens can utilize autophagy to enhance their own replication. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP6 can interact with ATPase proton pump component to inhibit lysosomal acidification, which was implicated in the autophagy process. However, research on how SARS-CoV-2 NSP6 affected autophagy, and its impact on virus replication is still lacking. Coronavirus NSP6 has been reported to promote coronavirus replication by limiting autophagosome expansion. However, this finding has not been confirmed in coronavirus disease 2019 (COVID-19). We investigated the effect of NSP6 protein on autophagosomes in different mutant strains of SARS-CoV-2 and revealed that the size of autophagosomes was reduced by NSP6 of the wild-type and Delta variant of SARS-CoV-2. In addition, we found that SARS-CoV-2 NSP6 localized to the lysosome and had an inhibitory effect on the binding of autophagosomes to the lysosome, which blocked the autophagy flux; this may be related to endoplasmic reticulum (ER)-related pathways. We also found that sigma-1 receptor (SIGMAR1) knock out (KO) reversed NSP6-induced autophagosome abnormality and resisted SARS-CoV-2 infection, which responds to the fact that SIGMAR1 is likely to be used as a potential target for the treatment of SARS-CoV-2 infection. In summary, we have provided a preliminary explanation of the effects on autophagy of the SARS-CoV-2 NSP6 protein from the pre-autophagic and late stages, and also found that SIGMAR1 is likely to be used as a potential target for SARS-CoV-2 therapy to develop relevant drugs.</p><p><strong>Importance: </strong>We have provided a preliminary explanation of the effects on autophagy of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) non-structure protein 6 from the pre-autophagic and late stages, and also found that sigma-1 receptor is likely to be used as a potential target for SARS-CoV-2 therapy to develop relevant drugs.</p>\",\"PeriodicalId\":17583,\"journal\":{\"name\":\"Journal of Virology\",\"volume\":\" \",\"pages\":\"e0075424\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575221/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/jvi.00754-24\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Virology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jvi.00754-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自噬是一种细胞自我防御机制,细胞可通过自噬杀死入侵的病原微生物,并增加病原体成分作为抗原的呈现。相反,病原体可以利用自噬来加强自身的复制。严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)的 NSP6 可与 ATPase 质子泵成分相互作用,抑制溶酶体酸化,这与自噬过程有关。然而,有关 SARS-CoV-2 NSP6 如何影响自噬及其对病毒复制的影响的研究仍然缺乏。据报道,冠状病毒 NSP6 可通过限制自噬体的扩展来促进冠状病毒的复制。然而,这一发现尚未在冠状病毒病2019(COVID-19)中得到证实。我们研究了SARS-CoV-2不同突变株中NSP6蛋白对自噬体的影响,发现野生型和Delta变异型SARS-CoV-2的NSP6会减小自噬体的大小。此外,我们还发现 SARS-CoV-2 NSP6 定位于溶酶体,对自噬体与溶酶体的结合有抑制作用,从而阻断了自噬通量;这可能与内质网(ER)相关途径有关。我们还发现,sigma-1受体(SIGMAR1)敲除(KO)可逆转NSP6诱导的自噬体异常,并抵抗SARS-CoV-2感染,这表明SIGMAR1可能被用作治疗SARS-CoV-2感染的潜在靶点。综上所述,我们从自噬前期和后期两个阶段初步解释了SARS-CoV-2 NSP6蛋白对自噬的影响,同时发现SIGMAR1有可能作为SARS-CoV-2治疗的潜在靶点,以开发相关药物:我们初步解释了严重急性呼吸系统综合征冠状病毒2(SARS-CoV-2)非结构蛋白6从自噬前期到后期对自噬的影响,还发现sigma-1受体很可能被用作SARS-CoV-2治疗的潜在靶点,以开发相关药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SARS-CoV-2 NSP6 reduces autophagosome size and affects viral replication via sigma-1 receptor.

Autophagy is a cellular self-defense mechanism by which cells can kill invading pathogenic microorganisms and increase the presentation of components of pathogens as antigens. Contrarily, pathogens can utilize autophagy to enhance their own replication. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) NSP6 can interact with ATPase proton pump component to inhibit lysosomal acidification, which was implicated in the autophagy process. However, research on how SARS-CoV-2 NSP6 affected autophagy, and its impact on virus replication is still lacking. Coronavirus NSP6 has been reported to promote coronavirus replication by limiting autophagosome expansion. However, this finding has not been confirmed in coronavirus disease 2019 (COVID-19). We investigated the effect of NSP6 protein on autophagosomes in different mutant strains of SARS-CoV-2 and revealed that the size of autophagosomes was reduced by NSP6 of the wild-type and Delta variant of SARS-CoV-2. In addition, we found that SARS-CoV-2 NSP6 localized to the lysosome and had an inhibitory effect on the binding of autophagosomes to the lysosome, which blocked the autophagy flux; this may be related to endoplasmic reticulum (ER)-related pathways. We also found that sigma-1 receptor (SIGMAR1) knock out (KO) reversed NSP6-induced autophagosome abnormality and resisted SARS-CoV-2 infection, which responds to the fact that SIGMAR1 is likely to be used as a potential target for the treatment of SARS-CoV-2 infection. In summary, we have provided a preliminary explanation of the effects on autophagy of the SARS-CoV-2 NSP6 protein from the pre-autophagic and late stages, and also found that SIGMAR1 is likely to be used as a potential target for SARS-CoV-2 therapy to develop relevant drugs.

Importance: We have provided a preliminary explanation of the effects on autophagy of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) non-structure protein 6 from the pre-autophagic and late stages, and also found that sigma-1 receptor is likely to be used as a potential target for SARS-CoV-2 therapy to develop relevant drugs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Virology
Journal of Virology 医学-病毒学
CiteScore
10.10
自引率
7.40%
发文量
906
审稿时长
1 months
期刊介绍: Journal of Virology (JVI) explores the nature of the viruses of animals, archaea, bacteria, fungi, plants, and protozoa. We welcome papers on virion structure and assembly, viral genome replication and regulation of gene expression, genetic diversity and evolution, virus-cell interactions, cellular responses to infection, transformation and oncogenesis, gene delivery, viral pathogenesis and immunity, and vaccines and antiviral agents.
期刊最新文献
Chicken GSDME, a major pore-forming molecule responsible for RNA virus-induced pyroptosis in chicken. Chicken ANP32A-independent replication of highly pathogenic avian influenza viruses potentially leads to mammalian adaptation-related amino acid substitutions in viral PB2 and PA proteins. Insights into the role of N6-methyladenosine (m6A) in plant-virus interactions. SARS-CoV-2 entry and fusion are independent of ACE2 localization to lipid rafts. Inactivation of checkpoint kinase 1 (Chk1) during parvovirus minute virus of mice (MVM) infection inhibits cellular homologous recombination repair and facilitates viral genome replication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1