Yatong Wang, Shumiao Hou, Qi Zhang, Yanhua Hou, Quanfu Wang
{"title":"来自精神杆菌 ANT206 的新型低温适应性硝酸单加氧酶:低温下 2-硝基丙烷的鉴定、表征和降解。","authors":"Yatong Wang, Shumiao Hou, Qi Zhang, Yanhua Hou, Quanfu Wang","doi":"10.3390/microorganisms12102100","DOIUrl":null,"url":null,"abstract":"<p><p>Aliphatic nitro compounds cause environmental pollution by being discharged into water with industrial waste. Biodegradation needs to be further explored as a green and pollution-free method of environmental remediation. In this study, we successfully cloned a novel nitronate monooxygenase gene (<i>psnmo</i>) from the genomic DNA library of <i>Psychrobacter</i> sp. ANT206 and investigated its ability to degrade 2-nitropropane (2-NP). Homology modeling demonstrated that PsNMO had a typical I nitronate monooxygenase catalytic site and cold-adapted structural features, such as few hydrogen bonds. The specific activity of purified recombinant PsNMO (rPsNMO) was 97.34 U/mg, rPsNMO exhibited thermal instability and reached maximum catalytic activity at 30 °C. Moreover, rPsNMO was most active in 1.5 M NaCl and remained at 104% of its full activity in 4.0 M NaCl, demonstrating its significant salt tolerance. Based on this finding, a novel bacterial cold-adapted enzyme was obtained in this work. Furthermore, rPsNMO protected <i>E. coli</i> BL21 (DE3)/pET28a(+) from the toxic effects of 2-NP at 30 °C because the 2-NP degradation rate reached 96.1% at 3 h and the final product was acetone. These results provide a reliable theoretical basis for the low-temperature degradation of 2-NP by NMO.</p>","PeriodicalId":18667,"journal":{"name":"Microorganisms","volume":"12 10","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510023/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Novel Cold-Adapted Nitronate Monooxygenase from <i>Psychrobacter</i> sp. ANT206: Identification, Characterization and Degradation of 2-Nitropropane at Low Temperature.\",\"authors\":\"Yatong Wang, Shumiao Hou, Qi Zhang, Yanhua Hou, Quanfu Wang\",\"doi\":\"10.3390/microorganisms12102100\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aliphatic nitro compounds cause environmental pollution by being discharged into water with industrial waste. Biodegradation needs to be further explored as a green and pollution-free method of environmental remediation. In this study, we successfully cloned a novel nitronate monooxygenase gene (<i>psnmo</i>) from the genomic DNA library of <i>Psychrobacter</i> sp. ANT206 and investigated its ability to degrade 2-nitropropane (2-NP). Homology modeling demonstrated that PsNMO had a typical I nitronate monooxygenase catalytic site and cold-adapted structural features, such as few hydrogen bonds. The specific activity of purified recombinant PsNMO (rPsNMO) was 97.34 U/mg, rPsNMO exhibited thermal instability and reached maximum catalytic activity at 30 °C. Moreover, rPsNMO was most active in 1.5 M NaCl and remained at 104% of its full activity in 4.0 M NaCl, demonstrating its significant salt tolerance. Based on this finding, a novel bacterial cold-adapted enzyme was obtained in this work. Furthermore, rPsNMO protected <i>E. coli</i> BL21 (DE3)/pET28a(+) from the toxic effects of 2-NP at 30 °C because the 2-NP degradation rate reached 96.1% at 3 h and the final product was acetone. These results provide a reliable theoretical basis for the low-temperature degradation of 2-NP by NMO.</p>\",\"PeriodicalId\":18667,\"journal\":{\"name\":\"Microorganisms\",\"volume\":\"12 10\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510023/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microorganisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/microorganisms12102100\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microorganisms","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/microorganisms12102100","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
脂肪族硝基化合物随工业废水排入水中,造成环境污染。生物降解作为一种绿色、无污染的环境修复方法有待进一步探索。在本研究中,我们从精神杆菌 ANT206 的基因组 DNA 文库中成功克隆了一个新型硝酸酯单加氧酶基因(psnmo),并研究了其降解 2-硝基丙烷(2-NP)的能力。同源建模表明,PsNMO具有典型的I型硝酸酯单加氧酶催化位点和冷适应结构特征,如氢键少。纯化的重组 PsNMO(rPsNMO)的比活度为 97.34 U/mg, rPsNMO 具有热不稳定性,在 30 °C 时达到最大催化活性。此外,rPsNMO 在 1.5 M NaCl 溶液中活性最高,在 4.0 M NaCl 溶液中活性保持在其全部活性的 104%,这表明它具有显著的耐盐性。基于这一发现,本研究获得了一种新型细菌冷适应酶。此外,rPsNMO 还能保护大肠杆菌 BL21 (DE3)/pET28a(+) 在 30 °C 下免受 2-NP 的毒性影响,因为 2-NP 在 3 小时内的降解率达到 96.1%,最终产物为丙酮。这些结果为 NMO 低温降解 2-NP 提供了可靠的理论依据。
A Novel Cold-Adapted Nitronate Monooxygenase from Psychrobacter sp. ANT206: Identification, Characterization and Degradation of 2-Nitropropane at Low Temperature.
Aliphatic nitro compounds cause environmental pollution by being discharged into water with industrial waste. Biodegradation needs to be further explored as a green and pollution-free method of environmental remediation. In this study, we successfully cloned a novel nitronate monooxygenase gene (psnmo) from the genomic DNA library of Psychrobacter sp. ANT206 and investigated its ability to degrade 2-nitropropane (2-NP). Homology modeling demonstrated that PsNMO had a typical I nitronate monooxygenase catalytic site and cold-adapted structural features, such as few hydrogen bonds. The specific activity of purified recombinant PsNMO (rPsNMO) was 97.34 U/mg, rPsNMO exhibited thermal instability and reached maximum catalytic activity at 30 °C. Moreover, rPsNMO was most active in 1.5 M NaCl and remained at 104% of its full activity in 4.0 M NaCl, demonstrating its significant salt tolerance. Based on this finding, a novel bacterial cold-adapted enzyme was obtained in this work. Furthermore, rPsNMO protected E. coli BL21 (DE3)/pET28a(+) from the toxic effects of 2-NP at 30 °C because the 2-NP degradation rate reached 96.1% at 3 h and the final product was acetone. These results provide a reliable theoretical basis for the low-temperature degradation of 2-NP by NMO.
期刊介绍:
Microorganisms (ISSN 2076-2607) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to prokaryotic and eukaryotic microorganisms, viruses and prions. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.