Jiaqi Li , Siqi Xu , Chaoguang Gu , Xinyi Fan , Xizhen Zhang , Meng Miao , Wei Yu
{"title":"DnaJ 的乙酰化会影响核头壳的运输,从而促进 BmNPV 的增殖。","authors":"Jiaqi Li , Siqi Xu , Chaoguang Gu , Xinyi Fan , Xizhen Zhang , Meng Miao , Wei Yu","doi":"10.1016/j.micpath.2024.107050","DOIUrl":null,"url":null,"abstract":"<div><div>DnaJ (Orf40), a late-expressed factor of <em>Bombyx mori</em> nucleopolyhedrovirus (BmNPV), is essential for the budding of virions and influences the transfer of the nucleocapsid from the nucleus to the cytoplasm. Previous studies showed that the knockdown of <em>dnaj</em> could prevent the nucleocapsid from exiting the nucleus, but the underlying regulatory mechanism remains unknown. In our previous acetylomic analysis of BmN cells infected with wild-type BmNPV, we found that a lysine residue (K17) was acetylated 36h post-infection, and the acetylation level of this site was upregulated about 3.5-fold. Here, we found that deacetylation of DnaJ K17 significantly inhibited viral proliferation without affecting viral DNA replication. Furthermore, deacetylation of DnaJ K17 affected the interaction with two nucleocapsid-associated proteins, Ac66 and VP80, which in turn affected the production of nucleocapsids, as well as their transport within the nucleus along F-actin fibers, leading to a decrease in the export of nucleocapsids from the nucleus. The reduced amount of nucleocapsids in the cytoplasm ultimately led to a decrease in the production of budded virions and consequently inhibited viral proliferation. In conclusion, acetylation of DnaJ affects nucleocapsid production and transport, thereby influencing viral proliferation.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"197 ","pages":"Article 107050"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acetylation of DnaJ facilitates the proliferation of BmNPV by affecting the transport of nucleocapsids\",\"authors\":\"Jiaqi Li , Siqi Xu , Chaoguang Gu , Xinyi Fan , Xizhen Zhang , Meng Miao , Wei Yu\",\"doi\":\"10.1016/j.micpath.2024.107050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>DnaJ (Orf40), a late-expressed factor of <em>Bombyx mori</em> nucleopolyhedrovirus (BmNPV), is essential for the budding of virions and influences the transfer of the nucleocapsid from the nucleus to the cytoplasm. Previous studies showed that the knockdown of <em>dnaj</em> could prevent the nucleocapsid from exiting the nucleus, but the underlying regulatory mechanism remains unknown. In our previous acetylomic analysis of BmN cells infected with wild-type BmNPV, we found that a lysine residue (K17) was acetylated 36h post-infection, and the acetylation level of this site was upregulated about 3.5-fold. Here, we found that deacetylation of DnaJ K17 significantly inhibited viral proliferation without affecting viral DNA replication. Furthermore, deacetylation of DnaJ K17 affected the interaction with two nucleocapsid-associated proteins, Ac66 and VP80, which in turn affected the production of nucleocapsids, as well as their transport within the nucleus along F-actin fibers, leading to a decrease in the export of nucleocapsids from the nucleus. The reduced amount of nucleocapsids in the cytoplasm ultimately led to a decrease in the production of budded virions and consequently inhibited viral proliferation. In conclusion, acetylation of DnaJ affects nucleocapsid production and transport, thereby influencing viral proliferation.</div></div>\",\"PeriodicalId\":18599,\"journal\":{\"name\":\"Microbial pathogenesis\",\"volume\":\"197 \",\"pages\":\"Article 107050\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial pathogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0882401024005175\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial pathogenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0882401024005175","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Acetylation of DnaJ facilitates the proliferation of BmNPV by affecting the transport of nucleocapsids
DnaJ (Orf40), a late-expressed factor of Bombyx mori nucleopolyhedrovirus (BmNPV), is essential for the budding of virions and influences the transfer of the nucleocapsid from the nucleus to the cytoplasm. Previous studies showed that the knockdown of dnaj could prevent the nucleocapsid from exiting the nucleus, but the underlying regulatory mechanism remains unknown. In our previous acetylomic analysis of BmN cells infected with wild-type BmNPV, we found that a lysine residue (K17) was acetylated 36h post-infection, and the acetylation level of this site was upregulated about 3.5-fold. Here, we found that deacetylation of DnaJ K17 significantly inhibited viral proliferation without affecting viral DNA replication. Furthermore, deacetylation of DnaJ K17 affected the interaction with two nucleocapsid-associated proteins, Ac66 and VP80, which in turn affected the production of nucleocapsids, as well as their transport within the nucleus along F-actin fibers, leading to a decrease in the export of nucleocapsids from the nucleus. The reduced amount of nucleocapsids in the cytoplasm ultimately led to a decrease in the production of budded virions and consequently inhibited viral proliferation. In conclusion, acetylation of DnaJ affects nucleocapsid production and transport, thereby influencing viral proliferation.
期刊介绍:
Microbial Pathogenesis publishes original contributions and reviews about the molecular and cellular mechanisms of infectious diseases. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports.
Research Areas Include:
-Pathogenesis
-Virulence factors
-Host susceptibility or resistance
-Immune mechanisms
-Identification, cloning and sequencing of relevant genes
-Genetic studies
-Viruses, prokaryotic organisms and protozoa
-Microbiota
-Systems biology related to infectious diseases
-Targets for vaccine design (pre-clinical studies)