基于质谱的大众蛋白质组学:2000 年代亨特实验室的肽和蛋白质鉴定。

IF 6.1 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Molecular & Cellular Proteomics Pub Date : 2024-10-21 DOI:10.1016/j.mcpro.2024.100866
Jessica R Chapman
{"title":"基于质谱的大众蛋白质组学:2000 年代亨特实验室的肽和蛋白质鉴定。","authors":"Jessica R Chapman","doi":"10.1016/j.mcpro.2024.100866","DOIUrl":null,"url":null,"abstract":"<p><p>There has been a rapid increase in the number of individuals utilizing mass spectrometry (MS)-based proteomics to study complex biological systems and questions since the start of the 2000's. Building off the advancements in ionization and liquid chromatography scientists continued to push towards technology that would enable in-depth analysis of biological specimen. Donald F Hunt and the Hunt laboratory were major contributors to this effort with their work on improving upon existing Fourier Transform MS, development of electron transfer dissociation, and continued work on ion-ion reactions to improve intact protein analysis. Collaboration with other instrumentation laboratories and instrument companies led to the sharing of technology and eventual commercialization providing greater access. Additionally, the Hunt laboratory spread the gospel of mass spectrometry-based proteomics through collaborations that lasted decades with other scientists who were experts in immunology, cellular signaling, epigenetics, and other fascinating fields. This article attempts to highlight the many contributions of Don and the Hunt laboratory to peptide and protein identification since the year 2000.</p>","PeriodicalId":18712,"journal":{"name":"Molecular & Cellular Proteomics","volume":" ","pages":"100866"},"PeriodicalIF":6.1000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mass Spectrometry-based proteomics for the masses: Peptide and protein identification in the Hunt laboratory during the 2000's.\",\"authors\":\"Jessica R Chapman\",\"doi\":\"10.1016/j.mcpro.2024.100866\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>There has been a rapid increase in the number of individuals utilizing mass spectrometry (MS)-based proteomics to study complex biological systems and questions since the start of the 2000's. Building off the advancements in ionization and liquid chromatography scientists continued to push towards technology that would enable in-depth analysis of biological specimen. Donald F Hunt and the Hunt laboratory were major contributors to this effort with their work on improving upon existing Fourier Transform MS, development of electron transfer dissociation, and continued work on ion-ion reactions to improve intact protein analysis. Collaboration with other instrumentation laboratories and instrument companies led to the sharing of technology and eventual commercialization providing greater access. Additionally, the Hunt laboratory spread the gospel of mass spectrometry-based proteomics through collaborations that lasted decades with other scientists who were experts in immunology, cellular signaling, epigenetics, and other fascinating fields. This article attempts to highlight the many contributions of Don and the Hunt laboratory to peptide and protein identification since the year 2000.</p>\",\"PeriodicalId\":18712,\"journal\":{\"name\":\"Molecular & Cellular Proteomics\",\"volume\":\" \",\"pages\":\"100866\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular & Cellular Proteomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.mcpro.2024.100866\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular & Cellular Proteomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.mcpro.2024.100866","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

自 2000 年代初以来,利用基于质谱(MS)的蛋白质组学研究复杂生物系统和问题的人数迅速增加。在电离和液相色谱技术取得进步的基础上,科学家们继续推动能够对生物样本进行深入分析的技术。唐纳德-亨特(Donald F Hunt)和亨特实验室在这方面做出了重大贡献,他们改进了现有的傅立叶变换质谱,开发了电子转移解离技术,并继续研究离子-离子反应以改进完整蛋白质分析。与其他仪器实验室和仪器公司的合作促进了技术共享,并最终实现了商业化,提供了更多的机会。此外,亨特实验室还通过与免疫学、细胞信号、表观遗传学和其他精彩领域的其他科学家进行长达数十年的合作,传播了基于质谱的蛋白质组学的福音。本文试图重点介绍唐和亨特实验室自 2000 年以来在多肽和蛋白质鉴定方面做出的诸多贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mass Spectrometry-based proteomics for the masses: Peptide and protein identification in the Hunt laboratory during the 2000's.

There has been a rapid increase in the number of individuals utilizing mass spectrometry (MS)-based proteomics to study complex biological systems and questions since the start of the 2000's. Building off the advancements in ionization and liquid chromatography scientists continued to push towards technology that would enable in-depth analysis of biological specimen. Donald F Hunt and the Hunt laboratory were major contributors to this effort with their work on improving upon existing Fourier Transform MS, development of electron transfer dissociation, and continued work on ion-ion reactions to improve intact protein analysis. Collaboration with other instrumentation laboratories and instrument companies led to the sharing of technology and eventual commercialization providing greater access. Additionally, the Hunt laboratory spread the gospel of mass spectrometry-based proteomics through collaborations that lasted decades with other scientists who were experts in immunology, cellular signaling, epigenetics, and other fascinating fields. This article attempts to highlight the many contributions of Don and the Hunt laboratory to peptide and protein identification since the year 2000.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular & Cellular Proteomics
Molecular & Cellular Proteomics 生物-生化研究方法
CiteScore
11.50
自引率
4.30%
发文量
131
审稿时长
84 days
期刊介绍: The mission of MCP is to foster the development and applications of proteomics in both basic and translational research. MCP will publish manuscripts that report significant new biological or clinical discoveries underpinned by proteomic observations across all kingdoms of life. Manuscripts must define the biological roles played by the proteins investigated or their mechanisms of action. The journal also emphasizes articles that describe innovative new computational methods and technological advancements that will enable future discoveries. Manuscripts describing such approaches do not have to include a solution to a biological problem, but must demonstrate that the technology works as described, is reproducible and is appropriate to uncover yet unknown protein/proteome function or properties using relevant model systems or publicly available data. Scope: -Fundamental studies in biology, including integrative "omics" studies, that provide mechanistic insights -Novel experimental and computational technologies -Proteogenomic data integration and analysis that enable greater understanding of physiology and disease processes -Pathway and network analyses of signaling that focus on the roles of post-translational modifications -Studies of proteome dynamics and quality controls, and their roles in disease -Studies of evolutionary processes effecting proteome dynamics, quality and regulation -Chemical proteomics, including mechanisms of drug action -Proteomics of the immune system and antigen presentation/recognition -Microbiome proteomics, host-microbe and host-pathogen interactions, and their roles in health and disease -Clinical and translational studies of human diseases -Metabolomics to understand functional connections between genes, proteins and phenotypes
期刊最新文献
Integrative Multi-PTM Proteomics Reveals Dynamic Global, Redox, Phosphorylation, and Acetylation Regulation in Cytokine-treated Pancreatic Beta Cells. Gradient-Elution Nanoflow Liquid Chromatography without a Binary Pump: Smoothed Step Gradients Enable Reproducible, Sensitive, and Low-Cost Separations for Single-Cell Proteomics. In-depth analysis of miRNA binding sites reveals the complex response of uterine epithelium to miR-26a-5p and miR-125b-5p during early pregnancy. Bridging the Gap from Proteomics Technology to Clinical Application: Highlights from the 68th Benzon Foundation Symposium. Knockdown proteomics reveals USP7 as a regulator of cell-cell adhesion in colorectal cancer via AJUBA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1