Meng Lu, Jie Li, Xiuxiu Sun, Dongqing Zhao, Huanhuan Zong, Chen Tang, Kai Li, Yuxun Zhou, Junhua Xiao
{"title":"利用多重 kb 级扩增片段捕获测序技术对同源区域的单核苷酸多态性进行基因分型。","authors":"Meng Lu, Jie Li, Xiuxiu Sun, Dongqing Zhao, Huanhuan Zong, Chen Tang, Kai Li, Yuxun Zhou, Junhua Xiao","doi":"10.1007/s00438-024-02192-9","DOIUrl":null,"url":null,"abstract":"<p><p>Single nucleotide polymorphisms (SNPs) in homologous regions play a critical role in the field of genetics. However, genotyping these SNPs is challenging due to the presence of repetitive sequences within genome, which demand specific method. We introduce a new, mid-throughput method that simplifies SNP genotyping in homologous DNA sequences by utilizing a combination of multiplex kb level PCR (PCR size 2.5k-3.5 kb) for capturing targeted regions and multiplex nested PCR library construction for next-generation sequencing (Multi-kb level capture-seq). First of all, we randomly selected 7 SNPs in homologous regions and successfully captured 6-plex kb level amplicons (one of segments contains 2 SNPs, while the remaining segments each have only one SNP) in a single tube. And then, the amplification products were subjected to multiplex nested PCR for library construction and sequenced on Illumina platform. We tested this strategy using 600 amplicons from 100 samples and accurately genotyped 96.8% of target SNPs with a coverage depth of ≥ 15×. For the uniformity within the samples, over 66.7% (4/6) of the amplicons had a coverage depth above 0.2-fold of average sequencing depth. To validate the accuracy of this approach, we performed Ligase detection reaction PCR for genotyping the 100 samples, and found that the genotyping data was 97.71% consistent with our NGS results. In conclusion, we have developed a highly efficient and accurate method for SNP genotyping in homologous regions, which offers researchers a new strategy to explore the complex regions of genome.</p>","PeriodicalId":18816,"journal":{"name":"Molecular Genetics and Genomics","volume":"299 1","pages":"99"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genotyping single nucleotide polymorphisms in homologous regions using multiplex kb level amplicon capture sequencing.\",\"authors\":\"Meng Lu, Jie Li, Xiuxiu Sun, Dongqing Zhao, Huanhuan Zong, Chen Tang, Kai Li, Yuxun Zhou, Junhua Xiao\",\"doi\":\"10.1007/s00438-024-02192-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single nucleotide polymorphisms (SNPs) in homologous regions play a critical role in the field of genetics. However, genotyping these SNPs is challenging due to the presence of repetitive sequences within genome, which demand specific method. We introduce a new, mid-throughput method that simplifies SNP genotyping in homologous DNA sequences by utilizing a combination of multiplex kb level PCR (PCR size 2.5k-3.5 kb) for capturing targeted regions and multiplex nested PCR library construction for next-generation sequencing (Multi-kb level capture-seq). First of all, we randomly selected 7 SNPs in homologous regions and successfully captured 6-plex kb level amplicons (one of segments contains 2 SNPs, while the remaining segments each have only one SNP) in a single tube. And then, the amplification products were subjected to multiplex nested PCR for library construction and sequenced on Illumina platform. We tested this strategy using 600 amplicons from 100 samples and accurately genotyped 96.8% of target SNPs with a coverage depth of ≥ 15×. For the uniformity within the samples, over 66.7% (4/6) of the amplicons had a coverage depth above 0.2-fold of average sequencing depth. To validate the accuracy of this approach, we performed Ligase detection reaction PCR for genotyping the 100 samples, and found that the genotyping data was 97.71% consistent with our NGS results. In conclusion, we have developed a highly efficient and accurate method for SNP genotyping in homologous regions, which offers researchers a new strategy to explore the complex regions of genome.</p>\",\"PeriodicalId\":18816,\"journal\":{\"name\":\"Molecular Genetics and Genomics\",\"volume\":\"299 1\",\"pages\":\"99\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Genetics and Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00438-024-02192-9\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Genetics and Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00438-024-02192-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Genotyping single nucleotide polymorphisms in homologous regions using multiplex kb level amplicon capture sequencing.
Single nucleotide polymorphisms (SNPs) in homologous regions play a critical role in the field of genetics. However, genotyping these SNPs is challenging due to the presence of repetitive sequences within genome, which demand specific method. We introduce a new, mid-throughput method that simplifies SNP genotyping in homologous DNA sequences by utilizing a combination of multiplex kb level PCR (PCR size 2.5k-3.5 kb) for capturing targeted regions and multiplex nested PCR library construction for next-generation sequencing (Multi-kb level capture-seq). First of all, we randomly selected 7 SNPs in homologous regions and successfully captured 6-plex kb level amplicons (one of segments contains 2 SNPs, while the remaining segments each have only one SNP) in a single tube. And then, the amplification products were subjected to multiplex nested PCR for library construction and sequenced on Illumina platform. We tested this strategy using 600 amplicons from 100 samples and accurately genotyped 96.8% of target SNPs with a coverage depth of ≥ 15×. For the uniformity within the samples, over 66.7% (4/6) of the amplicons had a coverage depth above 0.2-fold of average sequencing depth. To validate the accuracy of this approach, we performed Ligase detection reaction PCR for genotyping the 100 samples, and found that the genotyping data was 97.71% consistent with our NGS results. In conclusion, we have developed a highly efficient and accurate method for SNP genotyping in homologous regions, which offers researchers a new strategy to explore the complex regions of genome.
期刊介绍:
Molecular Genetics and Genomics (MGG) publishes peer-reviewed articles covering all areas of genetics and genomics. Any approach to the study of genes and genomes is considered, be it experimental, theoretical or synthetic. MGG publishes research on all organisms that is of broad interest to those working in the fields of genetics, genomics, biology, medicine and biotechnology.
The journal investigates a broad range of topics, including these from recent issues: mechanisms for extending longevity in a variety of organisms; screening of yeast metal homeostasis genes involved in mitochondrial functions; molecular mapping of cultivar-specific avirulence genes in the rice blast fungus and more.