Jordi H.C. Boons , Elisabeth J. Vinke , Gertjan Dingemanse , Bernd Kremer , André Goedegebure , Meike W. Vernooij
{"title":"听力损失及其与老年人白质微结构纵向变化的关系:鹿特丹研究","authors":"Jordi H.C. Boons , Elisabeth J. Vinke , Gertjan Dingemanse , Bernd Kremer , André Goedegebure , Meike W. Vernooij","doi":"10.1016/j.neurobiolaging.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>Hearing loss is considered a potentially modifiable risk factor for dementia. The sensory deprivation theory postulates that hearing loss adversely affects cognition in older adults through structural brain changes, but longitudinal studies are scarce. To find evidence for a possible detrimental effect of hearing loss on white matter microstructure, we carried out a longitudinal study in the population-based Rotterdam Study. A total of 1877 participants with a median age at baseline of 56.4 years (IQR: [52.2–60.0]) underwent audiometry and had longitudinal diffusion imaging data available with a mean follow-up of 4.0 years. A lower level of hearing acuity was associated with worse white matter microstructure in the left uncinate fasciculus and superior longitudinal fasciculus at baseline. Poorer hearing acuity was also associated with faster microstructural deterioration over time in the left superior longitudinal fasciculus. The strongest effects were observed for low-frequency hearing thresholds, while the high-frequency thresholds showed the weakest associations. These results suggest that hearing loss may contribute to the age-related decline in brain structure, consistent with the sensory deprivation theory.</div></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"145 ","pages":"Pages 24-31"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hearing loss and its relation to longitudinal changes in white matter microstructure in older adults: The Rotterdam Study\",\"authors\":\"Jordi H.C. Boons , Elisabeth J. Vinke , Gertjan Dingemanse , Bernd Kremer , André Goedegebure , Meike W. Vernooij\",\"doi\":\"10.1016/j.neurobiolaging.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hearing loss is considered a potentially modifiable risk factor for dementia. The sensory deprivation theory postulates that hearing loss adversely affects cognition in older adults through structural brain changes, but longitudinal studies are scarce. To find evidence for a possible detrimental effect of hearing loss on white matter microstructure, we carried out a longitudinal study in the population-based Rotterdam Study. A total of 1877 participants with a median age at baseline of 56.4 years (IQR: [52.2–60.0]) underwent audiometry and had longitudinal diffusion imaging data available with a mean follow-up of 4.0 years. A lower level of hearing acuity was associated with worse white matter microstructure in the left uncinate fasciculus and superior longitudinal fasciculus at baseline. Poorer hearing acuity was also associated with faster microstructural deterioration over time in the left superior longitudinal fasciculus. The strongest effects were observed for low-frequency hearing thresholds, while the high-frequency thresholds showed the weakest associations. These results suggest that hearing loss may contribute to the age-related decline in brain structure, consistent with the sensory deprivation theory.</div></div>\",\"PeriodicalId\":19110,\"journal\":{\"name\":\"Neurobiology of Aging\",\"volume\":\"145 \",\"pages\":\"Pages 24-31\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Aging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S019745802400174X\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019745802400174X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
Hearing loss and its relation to longitudinal changes in white matter microstructure in older adults: The Rotterdam Study
Hearing loss is considered a potentially modifiable risk factor for dementia. The sensory deprivation theory postulates that hearing loss adversely affects cognition in older adults through structural brain changes, but longitudinal studies are scarce. To find evidence for a possible detrimental effect of hearing loss on white matter microstructure, we carried out a longitudinal study in the population-based Rotterdam Study. A total of 1877 participants with a median age at baseline of 56.4 years (IQR: [52.2–60.0]) underwent audiometry and had longitudinal diffusion imaging data available with a mean follow-up of 4.0 years. A lower level of hearing acuity was associated with worse white matter microstructure in the left uncinate fasciculus and superior longitudinal fasciculus at baseline. Poorer hearing acuity was also associated with faster microstructural deterioration over time in the left superior longitudinal fasciculus. The strongest effects were observed for low-frequency hearing thresholds, while the high-frequency thresholds showed the weakest associations. These results suggest that hearing loss may contribute to the age-related decline in brain structure, consistent with the sensory deprivation theory.
期刊介绍:
Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.