{"title":"丙磺舒对替诺福韦的调节作用:对药物、白细胞介素-1β以及前额叶皮层和小脑中多巴胺浓度的影响","authors":"Simangele NE Shabalala, M. Luvuno, M.V. Mabandla","doi":"10.1016/j.neuroscience.2024.10.031","DOIUrl":null,"url":null,"abstract":"<div><div>The blood–brain barrier’s limited permeability to tenofovir restricts its ability to clear HIV from the brain. Probenecid acting as an adjuvant increases tenofovir concentrations in plasma and the kidneys thereby enhancing its therapeutic effect. However, the probenecid effect on brain tenofovir concentration and possible adverse effects remains poorly understood. We investigated the effect of probenecid co-administered tenofovir on tenofovir brain concentration, interleukin-1β (IL-1β) and dopamine concentration in the prefrontal cortex (PFC) and the cerebellum. Ninety-six male BALB/c mice were divided into four groups viz: a control group, Tenofovir disoproxil fumarate (TDF) treated, probenecid treated, and TDF + probenecid treated. We orally administered a single dose of TDF (5 mg/kg), and probenecid (8.3 mg/kg), and sacrificed six mice per group after 1 h, 4 h, and 6 h post-treatment to collect plasma, PFC, and cerebellar tissue. Co-administered tenofovir increased tenofovir concentration, peaking at 6 h with the cerebellum having the highest concentration. This suggests that probenecid enhanced the entry of tenofovir into the brain. Tenofovir alone increased IL-1β concentration at all intervals post-administration, while probenecid alone had no impact on IL-1β concentration. Co-administered tenofovir also increased IL-1β concentration. Probenecid’s limited impact on IL-1β concentration following co-administration suggests that its anti-inflammatory properties may require more than 6 h to have an effect. Furthermore, neither tenofovir nor probenecid affected dopamine concentration. In conclusion, probenecid enhances the concentration and retention of tenofovir in the brain, making it a possible pharmacokinetic enhancer. However, its anti-inflammatory effects may require a longer duration to fully manifest.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"562 ","pages":"Pages 209-216"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modulation of tenofovir by probenecid: Impact on drug, interleukin-1β, and dopamine concentration in the prefrontal cortex and cerebellum\",\"authors\":\"Simangele NE Shabalala, M. Luvuno, M.V. Mabandla\",\"doi\":\"10.1016/j.neuroscience.2024.10.031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The blood–brain barrier’s limited permeability to tenofovir restricts its ability to clear HIV from the brain. Probenecid acting as an adjuvant increases tenofovir concentrations in plasma and the kidneys thereby enhancing its therapeutic effect. However, the probenecid effect on brain tenofovir concentration and possible adverse effects remains poorly understood. We investigated the effect of probenecid co-administered tenofovir on tenofovir brain concentration, interleukin-1β (IL-1β) and dopamine concentration in the prefrontal cortex (PFC) and the cerebellum. Ninety-six male BALB/c mice were divided into four groups viz: a control group, Tenofovir disoproxil fumarate (TDF) treated, probenecid treated, and TDF + probenecid treated. We orally administered a single dose of TDF (5 mg/kg), and probenecid (8.3 mg/kg), and sacrificed six mice per group after 1 h, 4 h, and 6 h post-treatment to collect plasma, PFC, and cerebellar tissue. Co-administered tenofovir increased tenofovir concentration, peaking at 6 h with the cerebellum having the highest concentration. This suggests that probenecid enhanced the entry of tenofovir into the brain. Tenofovir alone increased IL-1β concentration at all intervals post-administration, while probenecid alone had no impact on IL-1β concentration. Co-administered tenofovir also increased IL-1β concentration. Probenecid’s limited impact on IL-1β concentration following co-administration suggests that its anti-inflammatory properties may require more than 6 h to have an effect. Furthermore, neither tenofovir nor probenecid affected dopamine concentration. In conclusion, probenecid enhances the concentration and retention of tenofovir in the brain, making it a possible pharmacokinetic enhancer. However, its anti-inflammatory effects may require a longer duration to fully manifest.</div></div>\",\"PeriodicalId\":19142,\"journal\":{\"name\":\"Neuroscience\",\"volume\":\"562 \",\"pages\":\"Pages 209-216\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306452224005438\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452224005438","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Modulation of tenofovir by probenecid: Impact on drug, interleukin-1β, and dopamine concentration in the prefrontal cortex and cerebellum
The blood–brain barrier’s limited permeability to tenofovir restricts its ability to clear HIV from the brain. Probenecid acting as an adjuvant increases tenofovir concentrations in plasma and the kidneys thereby enhancing its therapeutic effect. However, the probenecid effect on brain tenofovir concentration and possible adverse effects remains poorly understood. We investigated the effect of probenecid co-administered tenofovir on tenofovir brain concentration, interleukin-1β (IL-1β) and dopamine concentration in the prefrontal cortex (PFC) and the cerebellum. Ninety-six male BALB/c mice were divided into four groups viz: a control group, Tenofovir disoproxil fumarate (TDF) treated, probenecid treated, and TDF + probenecid treated. We orally administered a single dose of TDF (5 mg/kg), and probenecid (8.3 mg/kg), and sacrificed six mice per group after 1 h, 4 h, and 6 h post-treatment to collect plasma, PFC, and cerebellar tissue. Co-administered tenofovir increased tenofovir concentration, peaking at 6 h with the cerebellum having the highest concentration. This suggests that probenecid enhanced the entry of tenofovir into the brain. Tenofovir alone increased IL-1β concentration at all intervals post-administration, while probenecid alone had no impact on IL-1β concentration. Co-administered tenofovir also increased IL-1β concentration. Probenecid’s limited impact on IL-1β concentration following co-administration suggests that its anti-inflammatory properties may require more than 6 h to have an effect. Furthermore, neither tenofovir nor probenecid affected dopamine concentration. In conclusion, probenecid enhances the concentration and retention of tenofovir in the brain, making it a possible pharmacokinetic enhancer. However, its anti-inflammatory effects may require a longer duration to fully manifest.
期刊介绍:
Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.