{"title":"在人子宫内膜基质细胞系(THESC)中表达的Nesfatin-1通过FAK/PI3K/AKT信号通路刺激蜕膜化。","authors":"Jinah Ha, Hyunwon Yang","doi":"10.1016/j.peptides.2024.171315","DOIUrl":null,"url":null,"abstract":"<div><div>This study aimed to investigate the expression and functional role of nesfatin-1, a peptide hormone traditionally associated with appetite regulation, in the human endometrium. Specifically, we examined its presence and regulatory potential in the human endometrial stromal cell line, THESC cells, focusing on the process of endometrial decidualization, which is critical for implantation and pregnancy maintenance. We found that nesfatin-1 and its binding sites were expressed in THESC cells. Furthermore, nesfatin-1 protein expression decreased after treatment with 17β-estradiol but increased upon exposure to progesterone, indicating an influence of sexsteroid hormones on nesfatin-1 expression. Notably, administration of nesfatin-1 protein to THESC cells resulted in significant upregulation of genes associated with decidualization, such as insulin-like growth factor binding protein 1 (IGFBP1) and prolactin. In addition, our research showed that nesfatin-1 promotes decidualization through the activation of the FAK/PI3K/AKT signaling pathway. These findings underscore the central role of nesfatin-1 in endometrial decidualization, and suggest its potential utility in the development of new treatments to improve fertility and pregnancy outcomes.</div></div>","PeriodicalId":19765,"journal":{"name":"Peptides","volume":"182 ","pages":"Article 171315"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nesfatin-1 expressed in human endometrial stromal cell line (THESC) stimulates decidualization through FAK/PI3K/AKT signaling pathway\",\"authors\":\"Jinah Ha, Hyunwon Yang\",\"doi\":\"10.1016/j.peptides.2024.171315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study aimed to investigate the expression and functional role of nesfatin-1, a peptide hormone traditionally associated with appetite regulation, in the human endometrium. Specifically, we examined its presence and regulatory potential in the human endometrial stromal cell line, THESC cells, focusing on the process of endometrial decidualization, which is critical for implantation and pregnancy maintenance. We found that nesfatin-1 and its binding sites were expressed in THESC cells. Furthermore, nesfatin-1 protein expression decreased after treatment with 17β-estradiol but increased upon exposure to progesterone, indicating an influence of sexsteroid hormones on nesfatin-1 expression. Notably, administration of nesfatin-1 protein to THESC cells resulted in significant upregulation of genes associated with decidualization, such as insulin-like growth factor binding protein 1 (IGFBP1) and prolactin. In addition, our research showed that nesfatin-1 promotes decidualization through the activation of the FAK/PI3K/AKT signaling pathway. These findings underscore the central role of nesfatin-1 in endometrial decidualization, and suggest its potential utility in the development of new treatments to improve fertility and pregnancy outcomes.</div></div>\",\"PeriodicalId\":19765,\"journal\":{\"name\":\"Peptides\",\"volume\":\"182 \",\"pages\":\"Article 171315\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Peptides\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196978124001682\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Peptides","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196978124001682","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Nesfatin-1 expressed in human endometrial stromal cell line (THESC) stimulates decidualization through FAK/PI3K/AKT signaling pathway
This study aimed to investigate the expression and functional role of nesfatin-1, a peptide hormone traditionally associated with appetite regulation, in the human endometrium. Specifically, we examined its presence and regulatory potential in the human endometrial stromal cell line, THESC cells, focusing on the process of endometrial decidualization, which is critical for implantation and pregnancy maintenance. We found that nesfatin-1 and its binding sites were expressed in THESC cells. Furthermore, nesfatin-1 protein expression decreased after treatment with 17β-estradiol but increased upon exposure to progesterone, indicating an influence of sexsteroid hormones on nesfatin-1 expression. Notably, administration of nesfatin-1 protein to THESC cells resulted in significant upregulation of genes associated with decidualization, such as insulin-like growth factor binding protein 1 (IGFBP1) and prolactin. In addition, our research showed that nesfatin-1 promotes decidualization through the activation of the FAK/PI3K/AKT signaling pathway. These findings underscore the central role of nesfatin-1 in endometrial decidualization, and suggest its potential utility in the development of new treatments to improve fertility and pregnancy outcomes.
期刊介绍:
Peptides is an international journal presenting original contributions on the biochemistry, physiology and pharmacology of biological active peptides, as well as their functions that relate to gastroenterology, endocrinology, and behavioral effects.
Peptides emphasizes all aspects of high profile peptide research in mammals and non-mammalian vertebrates. Special consideration can be given to plants and invertebrates. Submission of articles with clinical relevance is particularly encouraged.