载入 Cdc42 抑制剂的 PLGA-PEG 纳米粒子用于结直肠癌靶向治疗

IF 4.9 3区 医学 Q1 PHARMACOLOGY & PHARMACY Pharmaceutics Pub Date : 2024-10-06 DOI:10.3390/pharmaceutics16101301
Sanazar Kadyr, Altyn Zhuraliyeva, Aislu Yermekova, Aigerim Makhambetova, Daulet B Kaldybekov, Ellina A Mun, Denis Bulanin, Sholpan N Askarova, Bauyrzhan A Umbayev
{"title":"载入 Cdc42 抑制剂的 PLGA-PEG 纳米粒子用于结直肠癌靶向治疗","authors":"Sanazar Kadyr, Altyn Zhuraliyeva, Aislu Yermekova, Aigerim Makhambetova, Daulet B Kaldybekov, Ellina A Mun, Denis Bulanin, Sholpan N Askarova, Bauyrzhan A Umbayev","doi":"10.3390/pharmaceutics16101301","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> An inhibitor of small Rho GTPase Cdc42, CASIN, has been shown to reduce cancer cell proliferation, migration, and invasion, yet it has several limitations, including rapid drug elimination and low bioavailability, which prevents its systemic administration. In this study, we designed and characterized a nanoparticle-based delivery system for CASIN encapsulated within poly(lactide-co-glycolide)-block-poly(ethylene glycol)-carboxylic acid endcap nanoparticles (PLGA-PEG-COOH NPs) for targeted inhibition of Cdc42 activity in colon cancer. <b>Methods:</b> We applied DLS, TEM, and UV-vis spectroscopy methods to characterize the size, polydispersity index, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release of the synthesized nanoparticles. The CCK-8 cell viability test was used to study colorectal cancer cell growth in vitro. <b>Results:</b> We showed that CASIN-PLGA-PEG-COOH NPs were smooth, spherical, and had a particle size of 86 ± 1 nm, with an encapsulation efficiency of 66 ± 5% and a drug-loading capacity of 5 ± 1%. CASIN was gradually released from NPs, reaching its peak after 24 h, and could effectively inhibit the proliferation of HT-29 (IC50 = 19.55 µM), SW620 (IC50 = 9.33 µM), and HCT116 (IC50 = 10.45 µM) cells in concentrations ranging between 0.025-0.375 mg/mL. CASIN-PLGA-PEG-COOH NPs demonstrated low hemolytic activity with a hemolytic ratio of less than 1% for all tested concentrations. <b>Conclusion:</b> CASIN-PLGA-PEG-COOH NPs have high encapsulation efficiency, sustained drug release, good hemocompatibility, and antitumor activity in vitro. Our results suggest that PLGA-PEG-COOH nanoparticles loaded with CASIN show potential as a targeted treatment for colorectal cancer and could be recommended for further in vivo evaluation.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510643/pdf/","citationCount":"0","resultStr":"{\"title\":\"PLGA-PEG Nanoparticles Loaded with Cdc42 Inhibitor for Colorectal Cancer Targeted Therapy.\",\"authors\":\"Sanazar Kadyr, Altyn Zhuraliyeva, Aislu Yermekova, Aigerim Makhambetova, Daulet B Kaldybekov, Ellina A Mun, Denis Bulanin, Sholpan N Askarova, Bauyrzhan A Umbayev\",\"doi\":\"10.3390/pharmaceutics16101301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b>Background/Objectives:</b> An inhibitor of small Rho GTPase Cdc42, CASIN, has been shown to reduce cancer cell proliferation, migration, and invasion, yet it has several limitations, including rapid drug elimination and low bioavailability, which prevents its systemic administration. In this study, we designed and characterized a nanoparticle-based delivery system for CASIN encapsulated within poly(lactide-co-glycolide)-block-poly(ethylene glycol)-carboxylic acid endcap nanoparticles (PLGA-PEG-COOH NPs) for targeted inhibition of Cdc42 activity in colon cancer. <b>Methods:</b> We applied DLS, TEM, and UV-vis spectroscopy methods to characterize the size, polydispersity index, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release of the synthesized nanoparticles. The CCK-8 cell viability test was used to study colorectal cancer cell growth in vitro. <b>Results:</b> We showed that CASIN-PLGA-PEG-COOH NPs were smooth, spherical, and had a particle size of 86 ± 1 nm, with an encapsulation efficiency of 66 ± 5% and a drug-loading capacity of 5 ± 1%. CASIN was gradually released from NPs, reaching its peak after 24 h, and could effectively inhibit the proliferation of HT-29 (IC50 = 19.55 µM), SW620 (IC50 = 9.33 µM), and HCT116 (IC50 = 10.45 µM) cells in concentrations ranging between 0.025-0.375 mg/mL. CASIN-PLGA-PEG-COOH NPs demonstrated low hemolytic activity with a hemolytic ratio of less than 1% for all tested concentrations. <b>Conclusion:</b> CASIN-PLGA-PEG-COOH NPs have high encapsulation efficiency, sustained drug release, good hemocompatibility, and antitumor activity in vitro. Our results suggest that PLGA-PEG-COOH nanoparticles loaded with CASIN show potential as a targeted treatment for colorectal cancer and could be recommended for further in vivo evaluation.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510643/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics16101301\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics16101301","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

背景/目标:小 Rho GTPase Cdc42 的抑制剂 CASIN 已被证明可减少癌细胞的增殖、迁移和侵袭,但它也有一些局限性,包括药物消除快和生物利用度低,这妨碍了它的全身给药。在这项研究中,我们设计并鉴定了一种基于纳米颗粒的给药系统,该系统将 CASIN 封装在聚乳酸-聚乙二醇-羧酸内盖纳米颗粒(PLGA-PEG-COOH NPs)中,用于靶向抑制结肠癌中 Cdc42 的活性。方法:应用 DLS、TEM 和 UV-vis 光谱法表征合成纳米粒子的尺寸、多分散指数、zeta 电位、包封效率、负载能力和体外药物释放。采用 CCK-8 细胞活力测试法研究结直肠癌细胞的体外生长情况。结果显示结果表明,CASIN-PLGA-PEG-COOH NPs 为光滑球形,粒径为 86 ± 1 nm,包封效率为 66 ± 5%,载药量为 5 ± 1%。CASIN 从 NPs 中逐渐释放,24 h 后达到峰值,在 0.025-0.375 mg/mL 浓度范围内可有效抑制 HT-29(IC50 = 19.55 µM)、SW620(IC50 = 9.33 µM)和 HCT116(IC50 = 10.45 µM)细胞的增殖。CASIN-PLGA-PEG-COOH NPs 的溶血活性很低,所有测试浓度下的溶血率均低于 1%。结论CASIN-PLGA-PEG-COOH NPs 在体外具有较高的包封效率、持续的药物释放、良好的血液相容性和抗肿瘤活性。我们的研究结果表明,负载有 CASIN 的 PLGA-PEG-COOH 纳米粒子具有作为结直肠癌靶向治疗药物的潜力,可推荐用于进一步的体内评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PLGA-PEG Nanoparticles Loaded with Cdc42 Inhibitor for Colorectal Cancer Targeted Therapy.

Background/Objectives: An inhibitor of small Rho GTPase Cdc42, CASIN, has been shown to reduce cancer cell proliferation, migration, and invasion, yet it has several limitations, including rapid drug elimination and low bioavailability, which prevents its systemic administration. In this study, we designed and characterized a nanoparticle-based delivery system for CASIN encapsulated within poly(lactide-co-glycolide)-block-poly(ethylene glycol)-carboxylic acid endcap nanoparticles (PLGA-PEG-COOH NPs) for targeted inhibition of Cdc42 activity in colon cancer. Methods: We applied DLS, TEM, and UV-vis spectroscopy methods to characterize the size, polydispersity index, zeta potential, encapsulation efficiency, loading capacity, and in vitro drug release of the synthesized nanoparticles. The CCK-8 cell viability test was used to study colorectal cancer cell growth in vitro. Results: We showed that CASIN-PLGA-PEG-COOH NPs were smooth, spherical, and had a particle size of 86 ± 1 nm, with an encapsulation efficiency of 66 ± 5% and a drug-loading capacity of 5 ± 1%. CASIN was gradually released from NPs, reaching its peak after 24 h, and could effectively inhibit the proliferation of HT-29 (IC50 = 19.55 µM), SW620 (IC50 = 9.33 µM), and HCT116 (IC50 = 10.45 µM) cells in concentrations ranging between 0.025-0.375 mg/mL. CASIN-PLGA-PEG-COOH NPs demonstrated low hemolytic activity with a hemolytic ratio of less than 1% for all tested concentrations. Conclusion: CASIN-PLGA-PEG-COOH NPs have high encapsulation efficiency, sustained drug release, good hemocompatibility, and antitumor activity in vitro. Our results suggest that PLGA-PEG-COOH nanoparticles loaded with CASIN show potential as a targeted treatment for colorectal cancer and could be recommended for further in vivo evaluation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmaceutics
Pharmaceutics Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍: Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications,  and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Modular Nanotransporters Deliver Anti-Keap1 Monobody into Mouse Hepatocytes, Thereby Inhibiting Production of Reactive Oxygen Species. Nanomaterial-Enhanced Microneedles: Emerging Therapies for Diabetes and Obesity. Effectiveness of Lyoprotectants in Protein Stabilization During Lyophilization. Recent Advances in the Drugs and Glucose-Responsive Drug Delivery Systems for the Treatment of Diabetes: A Systematic Review. A Novel Hydrogel Sponge for Three-Dimensional Cell Culture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1