Silvia Voci, Agnese Gagliardi, Elena Giuliano, Maria Cristina Salvatici, Antonio Procopio, Donato Cosco
{"title":"含盐酸硫胺素的胶原蛋白纳米颗粒的体外黏附特性","authors":"Silvia Voci, Agnese Gagliardi, Elena Giuliano, Maria Cristina Salvatici, Antonio Procopio, Donato Cosco","doi":"10.3390/pharmaceutics16101296","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gliadins have aroused significant interest in the last decade as suitable biomaterials for food and pharmaceutical applications. In particular, the oral route is the preferred method of administration for gliadin-based formulations, due to the affinity of this biomaterial for the gut mucosa. However, up to now, this has been demonstrated only by means of in vivo or ex vivo studies.</p><p><strong>Methods: </strong>This is why, in this study, various in vitro techniques were employed in order to evaluate the ability of polymeric nanoparticles, made up of a commercial grade of the protein and an etheric surfactant, to interact with porcine gastric mucin. The nanosystems were also used for the encapsulation of thiamine hydrochloride, used as a model of a micronutrient.</p><p><strong>Results: </strong>The resulting systems were characterized by a mean diameter of ~160-170 nm, a narrow size distribution when 0.2-0.6 mg/mL of thiamine was used, and an encapsulation efficiency between 30 and 45% of the drug initially employed. The incubation of the gliadin nanosystems with various concentrations of porcine gastric mucin evidenced the ability of the carriers to interact with the mucus glycoprotein, showing a decreased Zeta potential after a 4 h incubation (from ~-30 to -40 mV), while demonstrating that the encapsulation of the drug did not affect its bioadhesive features.</p><p><strong>Conclusions: </strong>Altogether, these data support the conceivable application of gliadin nanoparticles as formulations for the oral administration of bioactive compounds.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"16 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510220/pdf/","citationCount":"0","resultStr":"{\"title\":\"In Vitro Mucoadhesive Features of Gliadin Nanoparticles Containing Thiamine Hydrochloride.\",\"authors\":\"Silvia Voci, Agnese Gagliardi, Elena Giuliano, Maria Cristina Salvatici, Antonio Procopio, Donato Cosco\",\"doi\":\"10.3390/pharmaceutics16101296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Gliadins have aroused significant interest in the last decade as suitable biomaterials for food and pharmaceutical applications. In particular, the oral route is the preferred method of administration for gliadin-based formulations, due to the affinity of this biomaterial for the gut mucosa. However, up to now, this has been demonstrated only by means of in vivo or ex vivo studies.</p><p><strong>Methods: </strong>This is why, in this study, various in vitro techniques were employed in order to evaluate the ability of polymeric nanoparticles, made up of a commercial grade of the protein and an etheric surfactant, to interact with porcine gastric mucin. The nanosystems were also used for the encapsulation of thiamine hydrochloride, used as a model of a micronutrient.</p><p><strong>Results: </strong>The resulting systems were characterized by a mean diameter of ~160-170 nm, a narrow size distribution when 0.2-0.6 mg/mL of thiamine was used, and an encapsulation efficiency between 30 and 45% of the drug initially employed. The incubation of the gliadin nanosystems with various concentrations of porcine gastric mucin evidenced the ability of the carriers to interact with the mucus glycoprotein, showing a decreased Zeta potential after a 4 h incubation (from ~-30 to -40 mV), while demonstrating that the encapsulation of the drug did not affect its bioadhesive features.</p><p><strong>Conclusions: </strong>Altogether, these data support the conceivable application of gliadin nanoparticles as formulations for the oral administration of bioactive compounds.</p>\",\"PeriodicalId\":19894,\"journal\":{\"name\":\"Pharmaceutics\",\"volume\":\"16 10\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510220/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/pharmaceutics16101296\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics16101296","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
In Vitro Mucoadhesive Features of Gliadin Nanoparticles Containing Thiamine Hydrochloride.
Background: Gliadins have aroused significant interest in the last decade as suitable biomaterials for food and pharmaceutical applications. In particular, the oral route is the preferred method of administration for gliadin-based formulations, due to the affinity of this biomaterial for the gut mucosa. However, up to now, this has been demonstrated only by means of in vivo or ex vivo studies.
Methods: This is why, in this study, various in vitro techniques were employed in order to evaluate the ability of polymeric nanoparticles, made up of a commercial grade of the protein and an etheric surfactant, to interact with porcine gastric mucin. The nanosystems were also used for the encapsulation of thiamine hydrochloride, used as a model of a micronutrient.
Results: The resulting systems were characterized by a mean diameter of ~160-170 nm, a narrow size distribution when 0.2-0.6 mg/mL of thiamine was used, and an encapsulation efficiency between 30 and 45% of the drug initially employed. The incubation of the gliadin nanosystems with various concentrations of porcine gastric mucin evidenced the ability of the carriers to interact with the mucus glycoprotein, showing a decreased Zeta potential after a 4 h incubation (from ~-30 to -40 mV), while demonstrating that the encapsulation of the drug did not affect its bioadhesive features.
Conclusions: Altogether, these data support the conceivable application of gliadin nanoparticles as formulations for the oral administration of bioactive compounds.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.