Jinping Shi, Yu Lei, Zemin Li, Li Jia, Pengjia He, Qiang Cheng, Zhao Zhang, Zhaomin Lei
{"title":"抗菌肽对盲肠微生物群的改变可提高荷斯坦公牛对营养物质的合理有效利用。","authors":"Jinping Shi, Yu Lei, Zemin Li, Li Jia, Pengjia He, Qiang Cheng, Zhao Zhang, Zhaomin Lei","doi":"10.1007/s12602-024-10379-0","DOIUrl":null,"url":null,"abstract":"<p><p>We previously observed that supplementation with antimicrobial peptides facilitated the average daily weight gain, net meat, and carcass weights of Holstein bulls. To expand our knowledge of the possible impact of antimicrobial peptides on cecum microbiota, further investigations were conducted. In this study, 18 castrated Holstein bulls with insignificant weight differences and 10 months of age were split randomly into two groups. The control group (CK) was fed a basic diet, whereas the antimicrobial peptide group (AP) was supplemented with 8 g of antimicrobial peptides for 270 days. After slaughter, metagenomic and metabolomic sequencing analyses were performed on the cecum contents. The results showed significantly higher levels of amylase, cellulase, protease, and lipase in the CK than in the AP group (P ≤ 0.05). The levels of β-glucosidase and xylanase (P ≤ 0.05), and acetic and propionic acids (P ≤ 0.01), were considerably elevated in the AP than in the CK group. The metagenome showed variations between the two groups only at the bacterial level, and 3258 bacteria with differences were annotated. A total of 138 differential abundant genes (P < 0.05) were identified in the CAZyme map, with 65 genes more abundant in the cecum of the AP group and 48 genes more abundant in the cecum of the CK group. Metabolomic analysis identified 68 differentially expressed metabolites. Conjoint analysis of microorganisms and metabolites revealed that Lactobacillus had the greatest impact on metabolites in the AP group and Brumimicrobium in the CK group. The advantageous strains of the AP group Firmicutes bacterium CAG:110 exhibited a strong symbiotic relationship with urodeoxycholic acid and hyodeoxycholic acid. This study identified the classification characteristics, functions, metabolites, and interactions of cecal microbiota with metabolites that contribute to host growth performance. Antimicrobial peptides affect the cecal microorganisms, making the use of nutrients more efficient. The utilization of hemicellulose in the cecum of ruminants may contribute more than cellulose to their production performance.</p>","PeriodicalId":20506,"journal":{"name":"Probiotics and Antimicrobial Proteins","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alteration of Cecal Microbiota by Antimicrobial Peptides Enhances the Rational and Efficient Utilization of Nutrients in Holstein Bulls.\",\"authors\":\"Jinping Shi, Yu Lei, Zemin Li, Li Jia, Pengjia He, Qiang Cheng, Zhao Zhang, Zhaomin Lei\",\"doi\":\"10.1007/s12602-024-10379-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We previously observed that supplementation with antimicrobial peptides facilitated the average daily weight gain, net meat, and carcass weights of Holstein bulls. To expand our knowledge of the possible impact of antimicrobial peptides on cecum microbiota, further investigations were conducted. In this study, 18 castrated Holstein bulls with insignificant weight differences and 10 months of age were split randomly into two groups. The control group (CK) was fed a basic diet, whereas the antimicrobial peptide group (AP) was supplemented with 8 g of antimicrobial peptides for 270 days. After slaughter, metagenomic and metabolomic sequencing analyses were performed on the cecum contents. The results showed significantly higher levels of amylase, cellulase, protease, and lipase in the CK than in the AP group (P ≤ 0.05). The levels of β-glucosidase and xylanase (P ≤ 0.05), and acetic and propionic acids (P ≤ 0.01), were considerably elevated in the AP than in the CK group. The metagenome showed variations between the two groups only at the bacterial level, and 3258 bacteria with differences were annotated. A total of 138 differential abundant genes (P < 0.05) were identified in the CAZyme map, with 65 genes more abundant in the cecum of the AP group and 48 genes more abundant in the cecum of the CK group. Metabolomic analysis identified 68 differentially expressed metabolites. Conjoint analysis of microorganisms and metabolites revealed that Lactobacillus had the greatest impact on metabolites in the AP group and Brumimicrobium in the CK group. The advantageous strains of the AP group Firmicutes bacterium CAG:110 exhibited a strong symbiotic relationship with urodeoxycholic acid and hyodeoxycholic acid. This study identified the classification characteristics, functions, metabolites, and interactions of cecal microbiota with metabolites that contribute to host growth performance. Antimicrobial peptides affect the cecal microorganisms, making the use of nutrients more efficient. The utilization of hemicellulose in the cecum of ruminants may contribute more than cellulose to their production performance.</p>\",\"PeriodicalId\":20506,\"journal\":{\"name\":\"Probiotics and Antimicrobial Proteins\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probiotics and Antimicrobial Proteins\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12602-024-10379-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probiotics and Antimicrobial Proteins","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12602-024-10379-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Alteration of Cecal Microbiota by Antimicrobial Peptides Enhances the Rational and Efficient Utilization of Nutrients in Holstein Bulls.
We previously observed that supplementation with antimicrobial peptides facilitated the average daily weight gain, net meat, and carcass weights of Holstein bulls. To expand our knowledge of the possible impact of antimicrobial peptides on cecum microbiota, further investigations were conducted. In this study, 18 castrated Holstein bulls with insignificant weight differences and 10 months of age were split randomly into two groups. The control group (CK) was fed a basic diet, whereas the antimicrobial peptide group (AP) was supplemented with 8 g of antimicrobial peptides for 270 days. After slaughter, metagenomic and metabolomic sequencing analyses were performed on the cecum contents. The results showed significantly higher levels of amylase, cellulase, protease, and lipase in the CK than in the AP group (P ≤ 0.05). The levels of β-glucosidase and xylanase (P ≤ 0.05), and acetic and propionic acids (P ≤ 0.01), were considerably elevated in the AP than in the CK group. The metagenome showed variations between the two groups only at the bacterial level, and 3258 bacteria with differences were annotated. A total of 138 differential abundant genes (P < 0.05) were identified in the CAZyme map, with 65 genes more abundant in the cecum of the AP group and 48 genes more abundant in the cecum of the CK group. Metabolomic analysis identified 68 differentially expressed metabolites. Conjoint analysis of microorganisms and metabolites revealed that Lactobacillus had the greatest impact on metabolites in the AP group and Brumimicrobium in the CK group. The advantageous strains of the AP group Firmicutes bacterium CAG:110 exhibited a strong symbiotic relationship with urodeoxycholic acid and hyodeoxycholic acid. This study identified the classification characteristics, functions, metabolites, and interactions of cecal microbiota with metabolites that contribute to host growth performance. Antimicrobial peptides affect the cecal microorganisms, making the use of nutrients more efficient. The utilization of hemicellulose in the cecum of ruminants may contribute more than cellulose to their production performance.
期刊介绍:
Probiotics and Antimicrobial Proteins publishes reviews, original articles, letters and short notes and technical/methodological communications aimed at advancing fundamental knowledge and exploration of the applications of probiotics, natural antimicrobial proteins and their derivatives in biomedical, agricultural, veterinary, food, and cosmetic products. The Journal welcomes fundamental research articles and reports on applications of these microorganisms and substances, and encourages structural studies and studies that correlate the structure and functional properties of antimicrobial proteins.