ADP 结合的线粒体 HSP70 与核苷酸交换因子 GRPEL1 的结合优于 GRPEL2。

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein Science Pub Date : 2024-11-01 DOI:10.1002/pro.5190
Pooja Manjunath, Gorazd Stojkovič, Liliya Euro, Svetlana Konovalova, Sjoerd Wanrooij, Kristian Koski, Henna Tyynismaa
{"title":"ADP 结合的线粒体 HSP70 与核苷酸交换因子 GRPEL1 的结合优于 GRPEL2。","authors":"Pooja Manjunath, Gorazd Stojkovič, Liliya Euro, Svetlana Konovalova, Sjoerd Wanrooij, Kristian Koski, Henna Tyynismaa","doi":"10.1002/pro.5190","DOIUrl":null,"url":null,"abstract":"<p><p>Human nucleotide exchange factors GRPEL1 and GRPEL2 play pivotal roles in the ADP-ATP exchange within the protein folding cycle of mitochondrial HSP70 (mtHSP70), a crucial chaperone facilitating protein import into the mitochondrial matrix. Studies in human cells and mice have indicated that while GRPEL1 serves as an essential co-chaperone for mtHSP70, GRPEL2 has a role regulated by stress. However, the precise structural and biochemical mechanisms underlying the distinct functions of the GRPEL proteins have remained elusive. In our study, we present evidence revealing that ADP-bound mtHSP70 exhibits remarkably higher affinity for GRPEL1 compared to GRPEL2, with the latter experiencing a notable decrease in affinity upon ADP binding. Additionally, Pi assay showed that GRPEL1, but not GRPEL2, enhanced the ATPase activity of mtHSP70. Utilizing Alphafold modeling, we propose that the interaction between GRPEL1 and mtHSP70 can induce the opening of the nucleotide binding cleft of the chaperone, thereby facilitating the release of ADP, whereas GRPEL2 lacks this capability. Additionally, our findings suggest that the redox-regulated Cys87 residue in GRPEL2 does not play a role in dimerization but rather reduces its affinity for mtHSP70. Our findings on the structural and functional disparities between GRPEL1 and GRPEL2 may have implications for mitochondrial protein folding and import processes under varying cellular conditions.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 11","pages":"e5190"},"PeriodicalIF":4.5000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500471/pdf/","citationCount":"0","resultStr":"{\"title\":\"Preferential binding of ADP-bound mitochondrial HSP70 to the nucleotide exchange factor GRPEL1 over GRPEL2.\",\"authors\":\"Pooja Manjunath, Gorazd Stojkovič, Liliya Euro, Svetlana Konovalova, Sjoerd Wanrooij, Kristian Koski, Henna Tyynismaa\",\"doi\":\"10.1002/pro.5190\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human nucleotide exchange factors GRPEL1 and GRPEL2 play pivotal roles in the ADP-ATP exchange within the protein folding cycle of mitochondrial HSP70 (mtHSP70), a crucial chaperone facilitating protein import into the mitochondrial matrix. Studies in human cells and mice have indicated that while GRPEL1 serves as an essential co-chaperone for mtHSP70, GRPEL2 has a role regulated by stress. However, the precise structural and biochemical mechanisms underlying the distinct functions of the GRPEL proteins have remained elusive. In our study, we present evidence revealing that ADP-bound mtHSP70 exhibits remarkably higher affinity for GRPEL1 compared to GRPEL2, with the latter experiencing a notable decrease in affinity upon ADP binding. Additionally, Pi assay showed that GRPEL1, but not GRPEL2, enhanced the ATPase activity of mtHSP70. Utilizing Alphafold modeling, we propose that the interaction between GRPEL1 and mtHSP70 can induce the opening of the nucleotide binding cleft of the chaperone, thereby facilitating the release of ADP, whereas GRPEL2 lacks this capability. Additionally, our findings suggest that the redox-regulated Cys87 residue in GRPEL2 does not play a role in dimerization but rather reduces its affinity for mtHSP70. Our findings on the structural and functional disparities between GRPEL1 and GRPEL2 may have implications for mitochondrial protein folding and import processes under varying cellular conditions.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"33 11\",\"pages\":\"e5190\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500471/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.5190\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.5190","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

人类核苷酸交换因子 GRPEL1 和 GRPEL2 在线粒体 HSP70(mtHSP70)蛋白质折叠循环中的 ADP-ATP 交换过程中发挥着关键作用。对人类细胞和小鼠的研究表明,GRPEL1 是 mtHSP70 的重要辅助伴侣,而 GRPEL2 的作用则受压力调节。然而,GRPEL 蛋白不同功能背后的确切结构和生化机制仍然难以捉摸。在我们的研究中,我们发现 ADP 结合的 mtHSP70 对 GRPEL1 的亲和力明显高于 GRPEL2,后者在 ADP 结合后亲和力明显下降。此外,Pi 试验表明,GRPEL1(而非 GRPEL2)增强了 mtHSP70 的 ATPase 活性。利用 Alphafold 模型,我们认为 GRPEL1 与 mtHSP70 之间的相互作用可诱导合子的核苷酸结合裂隙打开,从而促进 ADP 的释放,而 GRPEL2 则缺乏这种能力。此外,我们的研究结果表明,GRPEL2 中受氧化还原作用调节的 Cys87 残基并不在二聚化过程中发挥作用,而是降低了它对 mtHSP70 的亲和力。我们关于 GRPEL1 和 GRPEL2 结构和功能差异的发现可能会对不同细胞条件下线粒体蛋白质折叠和导入过程产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preferential binding of ADP-bound mitochondrial HSP70 to the nucleotide exchange factor GRPEL1 over GRPEL2.

Human nucleotide exchange factors GRPEL1 and GRPEL2 play pivotal roles in the ADP-ATP exchange within the protein folding cycle of mitochondrial HSP70 (mtHSP70), a crucial chaperone facilitating protein import into the mitochondrial matrix. Studies in human cells and mice have indicated that while GRPEL1 serves as an essential co-chaperone for mtHSP70, GRPEL2 has a role regulated by stress. However, the precise structural and biochemical mechanisms underlying the distinct functions of the GRPEL proteins have remained elusive. In our study, we present evidence revealing that ADP-bound mtHSP70 exhibits remarkably higher affinity for GRPEL1 compared to GRPEL2, with the latter experiencing a notable decrease in affinity upon ADP binding. Additionally, Pi assay showed that GRPEL1, but not GRPEL2, enhanced the ATPase activity of mtHSP70. Utilizing Alphafold modeling, we propose that the interaction between GRPEL1 and mtHSP70 can induce the opening of the nucleotide binding cleft of the chaperone, thereby facilitating the release of ADP, whereas GRPEL2 lacks this capability. Additionally, our findings suggest that the redox-regulated Cys87 residue in GRPEL2 does not play a role in dimerization but rather reduces its affinity for mtHSP70. Our findings on the structural and functional disparities between GRPEL1 and GRPEL2 may have implications for mitochondrial protein folding and import processes under varying cellular conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
期刊最新文献
A protein fitness predictive framework based on feature combination and intelligent searching. Amino acid variability at W194 of Staphylococcus aureus sortase A alters nucleophile specificity. Characterization of DsrD and its interaction with the DsrAB dissimilatory sulfite reductase. Complexity associated with caprylate binding to bovine serum albumin: Dimerization, allostery, and variance between the change in free energy and enthalpy of binding. Disulfide-mediated oligomerization of mutant Cu/Zn-superoxide dismutase associated with canine degenerative myelopathy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1