{"title":"RGD肽在三维培养中通过整合素⍺vβ3/⍺vβ5促进卵泡生长。","authors":"Cassandra Matsushige, Kaelyn Kitazumi, Amanda Beaman, Marissa Miyagi, Michelle D Tallquist, Yukiko Yamazaki","doi":"10.1530/REP-24-0151","DOIUrl":null,"url":null,"abstract":"<p><p>We recently developed a three-dimensional (3-D) ovarian tissue culture system supported by bacterial-derived dextran hydrogel. Arg-Gly-Asp (RGD) is an extracellular matrix (ECM)-derived triple peptide. Immature ovarian tissues cultured in RGD-modified dextran hydrogel significantly promoted antral follicle growth and oocyte quality compared with those cultured in dextran hydrogel alone. In this study, we examined the mechanism of follicle growth stimulated by RGD treatment in the 3-D system. First, we detected that direct contact between RGD-modified dextran hydrogel and ovarian interstitial cells is necessary to promote antral follicle growth. Therefore, we hypothesized that RGD stimulates antral follicle growth through RGD-binding integrin receptors expressed in the interstitial cell mass. Using qPCR and immunochemical staining, we identified that integrins ⍺vβ3 and ⍺v5 are predominantly expressed in the ovarian interstitial compartment. To assess the effect of RGD-integrin interaction on follicle growth, ovarian tissues were cultured with Cilengitide (Ci), an inhibitor specific for ⍺vβ3 and ⍺vβ5. Ci treatment suppressed RGD-induced follicle growth and oocyte quality in a dose-dependent manner. When the interstitial cell aggregates were cultured with RGD, cell migration and theca-related gene expression were significantly upregulated. Ci treatment dramatically suppressed these RGD-induced activities. In co-culturing interstitial aggregate and secondary follicles with RGD, migrating cells formed outermost cell layers around the follicles, like theca layers, which were totally blocked by Ci treatment. In conclusion, our results suggest that RGD stimulates theca cell differentiation in the ovarian interstitial cells through integrins ⍺vβ3 and ⍺v5 to promote antral follicle growth in our 3-D system.</p>","PeriodicalId":21127,"journal":{"name":"Reproduction","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RGD peptide promotes follicle growth through integrins ⍺vβ3/⍺vβ5 in three-dimensional culture.\",\"authors\":\"Cassandra Matsushige, Kaelyn Kitazumi, Amanda Beaman, Marissa Miyagi, Michelle D Tallquist, Yukiko Yamazaki\",\"doi\":\"10.1530/REP-24-0151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We recently developed a three-dimensional (3-D) ovarian tissue culture system supported by bacterial-derived dextran hydrogel. Arg-Gly-Asp (RGD) is an extracellular matrix (ECM)-derived triple peptide. Immature ovarian tissues cultured in RGD-modified dextran hydrogel significantly promoted antral follicle growth and oocyte quality compared with those cultured in dextran hydrogel alone. In this study, we examined the mechanism of follicle growth stimulated by RGD treatment in the 3-D system. First, we detected that direct contact between RGD-modified dextran hydrogel and ovarian interstitial cells is necessary to promote antral follicle growth. Therefore, we hypothesized that RGD stimulates antral follicle growth through RGD-binding integrin receptors expressed in the interstitial cell mass. Using qPCR and immunochemical staining, we identified that integrins ⍺vβ3 and ⍺v5 are predominantly expressed in the ovarian interstitial compartment. To assess the effect of RGD-integrin interaction on follicle growth, ovarian tissues were cultured with Cilengitide (Ci), an inhibitor specific for ⍺vβ3 and ⍺vβ5. Ci treatment suppressed RGD-induced follicle growth and oocyte quality in a dose-dependent manner. When the interstitial cell aggregates were cultured with RGD, cell migration and theca-related gene expression were significantly upregulated. Ci treatment dramatically suppressed these RGD-induced activities. In co-culturing interstitial aggregate and secondary follicles with RGD, migrating cells formed outermost cell layers around the follicles, like theca layers, which were totally blocked by Ci treatment. In conclusion, our results suggest that RGD stimulates theca cell differentiation in the ovarian interstitial cells through integrins ⍺vβ3 and ⍺v5 to promote antral follicle growth in our 3-D system.</p>\",\"PeriodicalId\":21127,\"journal\":{\"name\":\"Reproduction\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reproduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1530/REP-24-0151\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1530/REP-24-0151","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
RGD peptide promotes follicle growth through integrins ⍺vβ3/⍺vβ5 in three-dimensional culture.
We recently developed a three-dimensional (3-D) ovarian tissue culture system supported by bacterial-derived dextran hydrogel. Arg-Gly-Asp (RGD) is an extracellular matrix (ECM)-derived triple peptide. Immature ovarian tissues cultured in RGD-modified dextran hydrogel significantly promoted antral follicle growth and oocyte quality compared with those cultured in dextran hydrogel alone. In this study, we examined the mechanism of follicle growth stimulated by RGD treatment in the 3-D system. First, we detected that direct contact between RGD-modified dextran hydrogel and ovarian interstitial cells is necessary to promote antral follicle growth. Therefore, we hypothesized that RGD stimulates antral follicle growth through RGD-binding integrin receptors expressed in the interstitial cell mass. Using qPCR and immunochemical staining, we identified that integrins ⍺vβ3 and ⍺v5 are predominantly expressed in the ovarian interstitial compartment. To assess the effect of RGD-integrin interaction on follicle growth, ovarian tissues were cultured with Cilengitide (Ci), an inhibitor specific for ⍺vβ3 and ⍺vβ5. Ci treatment suppressed RGD-induced follicle growth and oocyte quality in a dose-dependent manner. When the interstitial cell aggregates were cultured with RGD, cell migration and theca-related gene expression were significantly upregulated. Ci treatment dramatically suppressed these RGD-induced activities. In co-culturing interstitial aggregate and secondary follicles with RGD, migrating cells formed outermost cell layers around the follicles, like theca layers, which were totally blocked by Ci treatment. In conclusion, our results suggest that RGD stimulates theca cell differentiation in the ovarian interstitial cells through integrins ⍺vβ3 and ⍺v5 to promote antral follicle growth in our 3-D system.
期刊介绍:
Reproduction is the official journal of the Society of Reproduction and Fertility (SRF). It was formed in 2001 when the Society merged its two journals, the Journal of Reproduction and Fertility and Reviews of Reproduction.
Reproduction publishes original research articles and topical reviews on the subject of reproductive and developmental biology, and reproductive medicine. The journal will consider publication of high-quality meta-analyses; these should be submitted to the research papers category. The journal considers studies in humans and all animal species, and will publish clinical studies if they advance our understanding of the underlying causes and/or mechanisms of disease.
Scientific excellence and broad interest to our readership are the most important criteria during the peer review process. The journal publishes articles that make a clear advance in the field, whether of mechanistic, descriptive or technical focus. Articles that substantiate new or controversial reports are welcomed if they are noteworthy and advance the field. Topics include, but are not limited to, reproductive immunology, reproductive toxicology, stem cells, environmental effects on reproductive potential and health (eg obesity), extracellular vesicles, fertility preservation and epigenetic effects on reproductive and developmental processes.