了解子宫内膜上皮细胞生物学和宫内粘连治疗应用的最新进展。

IF 7.1 2区 医学 Q1 CELL & TISSUE ENGINEERING Stem Cell Research & Therapy Pub Date : 2024-10-25 DOI:10.1186/s13287-024-03989-6
Jia Wang, Hong Zhan, Yinfeng Wang, Li Zhao, Yunke Huang, Ruijin Wu
{"title":"了解子宫内膜上皮细胞生物学和宫内粘连治疗应用的最新进展。","authors":"Jia Wang, Hong Zhan, Yinfeng Wang, Li Zhao, Yunke Huang, Ruijin Wu","doi":"10.1186/s13287-024-03989-6","DOIUrl":null,"url":null,"abstract":"<p><p>The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This process is mediated by endometrial adult stem/progenitor cells. During the healing of endometrial injuries, swift reepithelization results in the rapid covering of the wound surface and facilitates subsequent endometrial restoration. The involvement of endogenous endometrial epithelial stem cells, stromal cells, and bone marrow-derived cells in the regeneration of the endometrial epithelium has been a subject of prolonged debate. Increasing evidence suggests that the regeneration of the endometrial epithelium mainly relies on epithelial stem cells rather than stromal cells and bone marrow-derived cells. Currently, no consensus has been established on the identity of epithelial stem cells in the epithelial compartment. Several markers, including stage-specific embryonic antigen-1 (SSEA-1), sex-determining region Y-box 9 (SOX9), neural-cadherin (N-cadherin), leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5), CD44, axis inhibition protein 2 (Axin2), and aldehyde dehydrogenase 1A1 (ALDH1A1), have been suggested as potential candidate markers for endometrial epithelial stem cells. The identification of endometrial epithelial stem cells contributes to our understanding of endometrial regeneration and offers new therapeutic insights into diseases characterized by regenerative defects in the endometrium, such as intrauterine adhesion. This review explores different perspectives on the origins of human and mouse endometrial epithelial cells. It summarizes the potential markers, locations, and hierarchies of epithelial stem cells in both human and mouse endometrium. It also discusses epithelial cell-based treatments for intrauterine adhesion, hoping to inspire further research and clinical application of endometrial epithelial stem cells.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"15 1","pages":"379"},"PeriodicalIF":7.1000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515228/pdf/","citationCount":"0","resultStr":"{\"title\":\"Current advances in understanding endometrial epithelial cell biology and therapeutic applications for intrauterine adhesion.\",\"authors\":\"Jia Wang, Hong Zhan, Yinfeng Wang, Li Zhao, Yunke Huang, Ruijin Wu\",\"doi\":\"10.1186/s13287-024-03989-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This process is mediated by endometrial adult stem/progenitor cells. During the healing of endometrial injuries, swift reepithelization results in the rapid covering of the wound surface and facilitates subsequent endometrial restoration. The involvement of endogenous endometrial epithelial stem cells, stromal cells, and bone marrow-derived cells in the regeneration of the endometrial epithelium has been a subject of prolonged debate. Increasing evidence suggests that the regeneration of the endometrial epithelium mainly relies on epithelial stem cells rather than stromal cells and bone marrow-derived cells. Currently, no consensus has been established on the identity of epithelial stem cells in the epithelial compartment. Several markers, including stage-specific embryonic antigen-1 (SSEA-1), sex-determining region Y-box 9 (SOX9), neural-cadherin (N-cadherin), leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5), CD44, axis inhibition protein 2 (Axin2), and aldehyde dehydrogenase 1A1 (ALDH1A1), have been suggested as potential candidate markers for endometrial epithelial stem cells. The identification of endometrial epithelial stem cells contributes to our understanding of endometrial regeneration and offers new therapeutic insights into diseases characterized by regenerative defects in the endometrium, such as intrauterine adhesion. This review explores different perspectives on the origins of human and mouse endometrial epithelial cells. It summarizes the potential markers, locations, and hierarchies of epithelial stem cells in both human and mouse endometrium. It also discusses epithelial cell-based treatments for intrauterine adhesion, hoping to inspire further research and clinical application of endometrial epithelial stem cells.</p>\",\"PeriodicalId\":21876,\"journal\":{\"name\":\"Stem Cell Research & Therapy\",\"volume\":\"15 1\",\"pages\":\"379\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stem Cell Research & Therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13287-024-03989-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-024-03989-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

人类子宫内膜是一种再生能力极强的组织,能够在月经期和产后阶段进行无疤痕修复。这一过程由子宫内膜成体干细胞/祖细胞介导。在子宫内膜损伤愈合过程中,迅速的上皮再形成可快速覆盖伤口表面,并促进后续的子宫内膜修复。内源性子宫内膜上皮干细胞、基质细胞和骨髓衍生细胞是否参与子宫内膜上皮的再生一直是一个争论不休的话题。越来越多的证据表明,子宫内膜上皮的再生主要依赖于上皮干细胞,而非基质细胞和骨髓衍生细胞。目前,关于上皮细胞中上皮干细胞的身份尚未达成共识。一些标记物,包括阶段特异性胚胎抗原-1(SSEA-1)、性别决定区Y-盒9(SOX9)、神经粘连蛋白(N-cadherin)、含亮氨酸富重复G蛋白偶联受体5(LGR5)、CD44、轴抑制蛋白2(Axin2)和醛脱氢酶1A1(ALDH1A1),被认为是子宫内膜上皮干细胞的潜在候选标记物。子宫内膜上皮干细胞的鉴定有助于我们对子宫内膜再生的理解,并为以子宫内膜再生缺陷为特征的疾病(如宫腔内粘连)提供了新的治疗见解。本综述从不同角度探讨了人类和小鼠子宫内膜上皮细胞的起源。它总结了人和小鼠子宫内膜上皮干细胞的潜在标记、位置和层次。它还讨论了基于上皮细胞的宫内粘连治疗方法,希望能对子宫内膜上皮干细胞的进一步研究和临床应用有所启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Current advances in understanding endometrial epithelial cell biology and therapeutic applications for intrauterine adhesion.

The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This process is mediated by endometrial adult stem/progenitor cells. During the healing of endometrial injuries, swift reepithelization results in the rapid covering of the wound surface and facilitates subsequent endometrial restoration. The involvement of endogenous endometrial epithelial stem cells, stromal cells, and bone marrow-derived cells in the regeneration of the endometrial epithelium has been a subject of prolonged debate. Increasing evidence suggests that the regeneration of the endometrial epithelium mainly relies on epithelial stem cells rather than stromal cells and bone marrow-derived cells. Currently, no consensus has been established on the identity of epithelial stem cells in the epithelial compartment. Several markers, including stage-specific embryonic antigen-1 (SSEA-1), sex-determining region Y-box 9 (SOX9), neural-cadherin (N-cadherin), leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5), CD44, axis inhibition protein 2 (Axin2), and aldehyde dehydrogenase 1A1 (ALDH1A1), have been suggested as potential candidate markers for endometrial epithelial stem cells. The identification of endometrial epithelial stem cells contributes to our understanding of endometrial regeneration and offers new therapeutic insights into diseases characterized by regenerative defects in the endometrium, such as intrauterine adhesion. This review explores different perspectives on the origins of human and mouse endometrial epithelial cells. It summarizes the potential markers, locations, and hierarchies of epithelial stem cells in both human and mouse endometrium. It also discusses epithelial cell-based treatments for intrauterine adhesion, hoping to inspire further research and clinical application of endometrial epithelial stem cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stem Cell Research & Therapy
Stem Cell Research & Therapy CELL BIOLOGY-MEDICINE, RESEARCH & EXPERIMENTAL
CiteScore
13.20
自引率
8.00%
发文量
525
审稿时长
1 months
期刊介绍: Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.
期刊最新文献
Epithelial differentiation of gingival mesenchymal stem cells enhances re-epithelialization for full-thickness cutaneous wound healing. Highly efficient generation of mature megakaryocytes and functional platelets from human embryonic stem cells. Impact of mesenchymal stem cell size and adhesion modulation on in vivo distribution: insights from quantitative PET imaging. Mechanism and prospects of mitochondrial transplantation for spinal cord injury treatment. Correction: Multi-omics evaluation of clinical-grade human umbilical cord-derived mesenchymal stem cells in synergistic improvement of aging related disorders in a senescence-accelerated mouse model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1