{"title":"CircSEC24A通过调控miR-1253诱导KLF8的表达,从而促进非小细胞肺癌的恶性进展。","authors":"Wei Xiong, Jinhua Yang","doi":"10.1111/1759-7714.15450","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>This study aimed to analyze the role of circSEC24A in non-small cell lung cancer (NSCLC) and its underlying mechanism.</p><p><strong>Methods: </strong>RNA levels of circSEC24A, microRNA-1253 (miR-1253), and KLF transcription factor 8 (KLF8) were detected by quantitative real-time polymerase chain reaction. Protein expression was analyzed by western blot or immunohistochemistry assay. Cell proliferation and apoptosis were investigated by colony formation assay, 5-ethynyl-2'-deoxyuridine assay, and flow cytometry analysis. Glycolysis was evaluated by commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to identify the associations among circSEC24A, miR-1253, and KLF8. Xenograft mouse model assay was used to evaluate the effect of circSEC24A on tumor tumorigenesis.</p><p><strong>Results: </strong>CircSEC24A and KLF8 were upregulated, while miR-1253 was downregulated in NSCLC. CircSEC24A knockdown inhibited proliferation and glycolysis but induced the apoptosis of NSCLC cells. CircSEC24A acted as a miR-1253 sponge and regulated NSCLC cell malignancy by targeting miR-1253. KLF8 was identified as a target of miR-1253, and its overexpression attenuated miR-1253-induced effects in NSCLC cells. Besides, circSEC24A upregulated KLF8 by sponging miR-1253. Further, circSEC24A knockdown suppressed NSCLC cell tumorigenesis in vivo.</p><p><strong>Conclusions: </strong>CircSEC24A silencing inhibited NSCLC cell malignancy through the miR-1253/KLF8 pathway, providing a potential therapeutic target for NSCLC.</p>","PeriodicalId":23338,"journal":{"name":"Thoracic Cancer","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CircSEC24A induces KLF8 expression to promote the malignant progression of non-small cell lung cancer by regulating miR-1253.\",\"authors\":\"Wei Xiong, Jinhua Yang\",\"doi\":\"10.1111/1759-7714.15450\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>This study aimed to analyze the role of circSEC24A in non-small cell lung cancer (NSCLC) and its underlying mechanism.</p><p><strong>Methods: </strong>RNA levels of circSEC24A, microRNA-1253 (miR-1253), and KLF transcription factor 8 (KLF8) were detected by quantitative real-time polymerase chain reaction. Protein expression was analyzed by western blot or immunohistochemistry assay. Cell proliferation and apoptosis were investigated by colony formation assay, 5-ethynyl-2'-deoxyuridine assay, and flow cytometry analysis. Glycolysis was evaluated by commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to identify the associations among circSEC24A, miR-1253, and KLF8. Xenograft mouse model assay was used to evaluate the effect of circSEC24A on tumor tumorigenesis.</p><p><strong>Results: </strong>CircSEC24A and KLF8 were upregulated, while miR-1253 was downregulated in NSCLC. CircSEC24A knockdown inhibited proliferation and glycolysis but induced the apoptosis of NSCLC cells. CircSEC24A acted as a miR-1253 sponge and regulated NSCLC cell malignancy by targeting miR-1253. KLF8 was identified as a target of miR-1253, and its overexpression attenuated miR-1253-induced effects in NSCLC cells. Besides, circSEC24A upregulated KLF8 by sponging miR-1253. Further, circSEC24A knockdown suppressed NSCLC cell tumorigenesis in vivo.</p><p><strong>Conclusions: </strong>CircSEC24A silencing inhibited NSCLC cell malignancy through the miR-1253/KLF8 pathway, providing a potential therapeutic target for NSCLC.</p>\",\"PeriodicalId\":23338,\"journal\":{\"name\":\"Thoracic Cancer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thoracic Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/1759-7714.15450\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thoracic Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1759-7714.15450","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
CircSEC24A induces KLF8 expression to promote the malignant progression of non-small cell lung cancer by regulating miR-1253.
Objectives: This study aimed to analyze the role of circSEC24A in non-small cell lung cancer (NSCLC) and its underlying mechanism.
Methods: RNA levels of circSEC24A, microRNA-1253 (miR-1253), and KLF transcription factor 8 (KLF8) were detected by quantitative real-time polymerase chain reaction. Protein expression was analyzed by western blot or immunohistochemistry assay. Cell proliferation and apoptosis were investigated by colony formation assay, 5-ethynyl-2'-deoxyuridine assay, and flow cytometry analysis. Glycolysis was evaluated by commercial kits. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to identify the associations among circSEC24A, miR-1253, and KLF8. Xenograft mouse model assay was used to evaluate the effect of circSEC24A on tumor tumorigenesis.
Results: CircSEC24A and KLF8 were upregulated, while miR-1253 was downregulated in NSCLC. CircSEC24A knockdown inhibited proliferation and glycolysis but induced the apoptosis of NSCLC cells. CircSEC24A acted as a miR-1253 sponge and regulated NSCLC cell malignancy by targeting miR-1253. KLF8 was identified as a target of miR-1253, and its overexpression attenuated miR-1253-induced effects in NSCLC cells. Besides, circSEC24A upregulated KLF8 by sponging miR-1253. Further, circSEC24A knockdown suppressed NSCLC cell tumorigenesis in vivo.
Conclusions: CircSEC24A silencing inhibited NSCLC cell malignancy through the miR-1253/KLF8 pathway, providing a potential therapeutic target for NSCLC.
期刊介绍:
Thoracic Cancer aims to facilitate international collaboration and exchange of comprehensive and cutting-edge information on basic, translational, and applied clinical research in lung cancer, esophageal cancer, mediastinal cancer, breast cancer and other thoracic malignancies. Prevention, treatment and research relevant to Asia-Pacific is a focus area, but submissions from all regions are welcomed. The editors encourage contributions relevant to prevention, general thoracic surgery, medical oncology, radiology, radiation medicine, pathology, basic cancer research, as well as epidemiological and translational studies in thoracic cancer. Thoracic Cancer is the official publication of the Chinese Society of Lung Cancer, International Chinese Society of Thoracic Surgery and is endorsed by the Korean Association for the Study of Lung Cancer and the Hong Kong Cancer Therapy Society.
The Journal publishes a range of article types including: Editorials, Invited Reviews, Mini Reviews, Original Articles, Clinical Guidelines, Technological Notes, Imaging in thoracic cancer, Meeting Reports, Case Reports, Letters to the Editor, Commentaries, and Brief Reports.