Xiao-Ge Liang, Rui-Yao Guo, Meng-Fei Su, Xue-Jing Yang, Bo Yao, Jian-Sheng Cui
{"title":"[瓶装水中微塑料和邻苯二甲酸酯的含量及健康风险]。","authors":"Xiao-Ge Liang, Rui-Yao Guo, Meng-Fei Su, Xue-Jing Yang, Bo Yao, Jian-Sheng Cui","doi":"10.13227/j.hjkx.202310185","DOIUrl":null,"url":null,"abstract":"<p><p>To study the content and health risks of microplastics (MPs) and phthalate esters (PAEs) in bottled water, a quantitative analysis of MPs was conducted by using Rose Bengal staining and stereomicroscopy. Seven PAEs were quantified by using gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS). The daily intake of MPs was estimated and the carcinogenic and non-carcinogenic risks of PAEs were evaluated through a health risk assessment model. The results showed that the abundance of MPs in 21 bottled waters ranged from 48 n·L<sup>-1</sup> to 216 n·L<sup>-1</sup> (with the median abundance of 88 n·L<sup>-1</sup>). The majority (72.1%) of MPs were fibrous in shape, and fragments accounted for only 27.9%. The average proportion of small-sized (10-50 μm) MPs was 33.9%, and that of large-sized MPs (>500 μm) was 4.3%. Most MPs were blue. The ∑(PAEs) in bottled water was 1.15-2.47 μg·L<sup>-1</sup> (average 1.62 μg·L<sup>-1</sup>). PAEs detected with high frequencies (100%) included dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), di-<i>n</i>-butyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP), while the detection frequencies of butylbenzyl phthalate (BBP) and di-n-octyl phthalate (DNOP) were relatively low. The concentrations of DBP, DEHP, and DEP were all below the standard limits for drinking water in China. The ∑(PAEs) in the migration experiments was 0.61-2.04 μg·L<sup>-1</sup> (average 1.33 μg·L<sup>-1</sup>). The migration amounts of DBP and DEHP were also within the allowable range under the condition of 60℃ for 10 days. Seven PAEs were detected in both the bottles and caps, and the average content of DEHP in bottles was the highest, while DBP had the highest content in caps. The estimated intake of MPs (EDI) by drinking bottled water in different age groups of humans was 2.87 n·(kg·d)<sup>-1</sup> for adults, 3.87 n·(kg·d)<sup>-1</sup> for children, and 5.85 n·(kg·d)<sup>-1</sup> for infants. The carcinogenic risks of DEHP in 21 bottled water samples and the migration test were less than the maximum acceptable risk level (1×10<sup>-6</sup>), and the non-carcinogenic risk indices (HIs) of PAEs were all less than 1, indicating no non-carcinogenic risk to humans; however, the risk value of infants and children was higher than that of adults and should not be ignored.</p>","PeriodicalId":35937,"journal":{"name":"Huanjing Kexue/Environmental Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[Content and Health Risks of Microplastics and Phthalate Esters in Bottled Water].\",\"authors\":\"Xiao-Ge Liang, Rui-Yao Guo, Meng-Fei Su, Xue-Jing Yang, Bo Yao, Jian-Sheng Cui\",\"doi\":\"10.13227/j.hjkx.202310185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To study the content and health risks of microplastics (MPs) and phthalate esters (PAEs) in bottled water, a quantitative analysis of MPs was conducted by using Rose Bengal staining and stereomicroscopy. Seven PAEs were quantified by using gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS). The daily intake of MPs was estimated and the carcinogenic and non-carcinogenic risks of PAEs were evaluated through a health risk assessment model. The results showed that the abundance of MPs in 21 bottled waters ranged from 48 n·L<sup>-1</sup> to 216 n·L<sup>-1</sup> (with the median abundance of 88 n·L<sup>-1</sup>). The majority (72.1%) of MPs were fibrous in shape, and fragments accounted for only 27.9%. The average proportion of small-sized (10-50 μm) MPs was 33.9%, and that of large-sized MPs (>500 μm) was 4.3%. Most MPs were blue. The ∑(PAEs) in bottled water was 1.15-2.47 μg·L<sup>-1</sup> (average 1.62 μg·L<sup>-1</sup>). PAEs detected with high frequencies (100%) included dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), di-<i>n</i>-butyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP), while the detection frequencies of butylbenzyl phthalate (BBP) and di-n-octyl phthalate (DNOP) were relatively low. The concentrations of DBP, DEHP, and DEP were all below the standard limits for drinking water in China. The ∑(PAEs) in the migration experiments was 0.61-2.04 μg·L<sup>-1</sup> (average 1.33 μg·L<sup>-1</sup>). The migration amounts of DBP and DEHP were also within the allowable range under the condition of 60℃ for 10 days. Seven PAEs were detected in both the bottles and caps, and the average content of DEHP in bottles was the highest, while DBP had the highest content in caps. The estimated intake of MPs (EDI) by drinking bottled water in different age groups of humans was 2.87 n·(kg·d)<sup>-1</sup> for adults, 3.87 n·(kg·d)<sup>-1</sup> for children, and 5.85 n·(kg·d)<sup>-1</sup> for infants. The carcinogenic risks of DEHP in 21 bottled water samples and the migration test were less than the maximum acceptable risk level (1×10<sup>-6</sup>), and the non-carcinogenic risk indices (HIs) of PAEs were all less than 1, indicating no non-carcinogenic risk to humans; however, the risk value of infants and children was higher than that of adults and should not be ignored.</p>\",\"PeriodicalId\":35937,\"journal\":{\"name\":\"Huanjing Kexue/Environmental Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Huanjing Kexue/Environmental Science\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.13227/j.hjkx.202310185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Huanjing Kexue/Environmental Science","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.13227/j.hjkx.202310185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
[Content and Health Risks of Microplastics and Phthalate Esters in Bottled Water].
To study the content and health risks of microplastics (MPs) and phthalate esters (PAEs) in bottled water, a quantitative analysis of MPs was conducted by using Rose Bengal staining and stereomicroscopy. Seven PAEs were quantified by using gas chromatography-triple quadrupole tandem mass spectrometry (GC-MS/MS). The daily intake of MPs was estimated and the carcinogenic and non-carcinogenic risks of PAEs were evaluated through a health risk assessment model. The results showed that the abundance of MPs in 21 bottled waters ranged from 48 n·L-1 to 216 n·L-1 (with the median abundance of 88 n·L-1). The majority (72.1%) of MPs were fibrous in shape, and fragments accounted for only 27.9%. The average proportion of small-sized (10-50 μm) MPs was 33.9%, and that of large-sized MPs (>500 μm) was 4.3%. Most MPs were blue. The ∑(PAEs) in bottled water was 1.15-2.47 μg·L-1 (average 1.62 μg·L-1). PAEs detected with high frequencies (100%) included dimethyl phthalate (DMP), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), di-n-butyl phthalate (DBP), and di(2-ethylhexyl) phthalate (DEHP), while the detection frequencies of butylbenzyl phthalate (BBP) and di-n-octyl phthalate (DNOP) were relatively low. The concentrations of DBP, DEHP, and DEP were all below the standard limits for drinking water in China. The ∑(PAEs) in the migration experiments was 0.61-2.04 μg·L-1 (average 1.33 μg·L-1). The migration amounts of DBP and DEHP were also within the allowable range under the condition of 60℃ for 10 days. Seven PAEs were detected in both the bottles and caps, and the average content of DEHP in bottles was the highest, while DBP had the highest content in caps. The estimated intake of MPs (EDI) by drinking bottled water in different age groups of humans was 2.87 n·(kg·d)-1 for adults, 3.87 n·(kg·d)-1 for children, and 5.85 n·(kg·d)-1 for infants. The carcinogenic risks of DEHP in 21 bottled water samples and the migration test were less than the maximum acceptable risk level (1×10-6), and the non-carcinogenic risk indices (HIs) of PAEs were all less than 1, indicating no non-carcinogenic risk to humans; however, the risk value of infants and children was higher than that of adults and should not be ignored.