{"title":"医学影像中可视化深度学习模型的可解释人工智能(XAI)技术概览。","authors":"Deepshikha Bhati, Fnu Neha, Md Amiruzzaman","doi":"10.3390/jimaging10100239","DOIUrl":null,"url":null,"abstract":"<p><p>The combination of medical imaging and deep learning has significantly improved diagnostic and prognostic capabilities in the healthcare domain. Nevertheless, the inherent complexity of deep learning models poses challenges in understanding their decision-making processes. Interpretability and visualization techniques have emerged as crucial tools to unravel the black-box nature of these models, providing insights into their inner workings and enhancing trust in their predictions. This survey paper comprehensively examines various interpretation and visualization techniques applied to deep learning models in medical imaging. The paper reviews methodologies, discusses their applications, and evaluates their effectiveness in enhancing the interpretability, reliability, and clinical relevance of deep learning models in medical image analysis.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508748/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Survey on Explainable Artificial Intelligence (XAI) Techniques for Visualizing Deep Learning Models in Medical Imaging.\",\"authors\":\"Deepshikha Bhati, Fnu Neha, Md Amiruzzaman\",\"doi\":\"10.3390/jimaging10100239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The combination of medical imaging and deep learning has significantly improved diagnostic and prognostic capabilities in the healthcare domain. Nevertheless, the inherent complexity of deep learning models poses challenges in understanding their decision-making processes. Interpretability and visualization techniques have emerged as crucial tools to unravel the black-box nature of these models, providing insights into their inner workings and enhancing trust in their predictions. This survey paper comprehensively examines various interpretation and visualization techniques applied to deep learning models in medical imaging. The paper reviews methodologies, discusses their applications, and evaluates their effectiveness in enhancing the interpretability, reliability, and clinical relevance of deep learning models in medical image analysis.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508748/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging10100239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10100239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
A Survey on Explainable Artificial Intelligence (XAI) Techniques for Visualizing Deep Learning Models in Medical Imaging.
The combination of medical imaging and deep learning has significantly improved diagnostic and prognostic capabilities in the healthcare domain. Nevertheless, the inherent complexity of deep learning models poses challenges in understanding their decision-making processes. Interpretability and visualization techniques have emerged as crucial tools to unravel the black-box nature of these models, providing insights into their inner workings and enhancing trust in their predictions. This survey paper comprehensively examines various interpretation and visualization techniques applied to deep learning models in medical imaging. The paper reviews methodologies, discusses their applications, and evaluates their effectiveness in enhancing the interpretability, reliability, and clinical relevance of deep learning models in medical image analysis.