医学影像中可视化深度学习模型的可解释人工智能(XAI)技术概览。

IF 2.7 Q3 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Journal of Imaging Pub Date : 2024-09-25 DOI:10.3390/jimaging10100239
Deepshikha Bhati, Fnu Neha, Md Amiruzzaman
{"title":"医学影像中可视化深度学习模型的可解释人工智能(XAI)技术概览。","authors":"Deepshikha Bhati, Fnu Neha, Md Amiruzzaman","doi":"10.3390/jimaging10100239","DOIUrl":null,"url":null,"abstract":"<p><p>The combination of medical imaging and deep learning has significantly improved diagnostic and prognostic capabilities in the healthcare domain. Nevertheless, the inherent complexity of deep learning models poses challenges in understanding their decision-making processes. Interpretability and visualization techniques have emerged as crucial tools to unravel the black-box nature of these models, providing insights into their inner workings and enhancing trust in their predictions. This survey paper comprehensively examines various interpretation and visualization techniques applied to deep learning models in medical imaging. The paper reviews methodologies, discusses their applications, and evaluates their effectiveness in enhancing the interpretability, reliability, and clinical relevance of deep learning models in medical image analysis.</p>","PeriodicalId":37035,"journal":{"name":"Journal of Imaging","volume":"10 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508748/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Survey on Explainable Artificial Intelligence (XAI) Techniques for Visualizing Deep Learning Models in Medical Imaging.\",\"authors\":\"Deepshikha Bhati, Fnu Neha, Md Amiruzzaman\",\"doi\":\"10.3390/jimaging10100239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The combination of medical imaging and deep learning has significantly improved diagnostic and prognostic capabilities in the healthcare domain. Nevertheless, the inherent complexity of deep learning models poses challenges in understanding their decision-making processes. Interpretability and visualization techniques have emerged as crucial tools to unravel the black-box nature of these models, providing insights into their inner workings and enhancing trust in their predictions. This survey paper comprehensively examines various interpretation and visualization techniques applied to deep learning models in medical imaging. The paper reviews methodologies, discusses their applications, and evaluates their effectiveness in enhancing the interpretability, reliability, and clinical relevance of deep learning models in medical image analysis.</p>\",\"PeriodicalId\":37035,\"journal\":{\"name\":\"Journal of Imaging\",\"volume\":\"10 10\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508748/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jimaging10100239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jimaging10100239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

医学成像与深度学习的结合大大提高了医疗保健领域的诊断和预后能力。然而,深度学习模型固有的复杂性给理解其决策过程带来了挑战。可解释性和可视化技术已成为揭开这些模型黑箱本质的重要工具,为了解其内部运作提供了洞察力,并提高了对其预测的信任度。本调查报告全面研究了应用于医学影像深度学习模型的各种解释和可视化技术。论文回顾了各种方法,讨论了它们的应用,并评估了它们在提高医学影像分析中深度学习模型的可解释性、可靠性和临床相关性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Survey on Explainable Artificial Intelligence (XAI) Techniques for Visualizing Deep Learning Models in Medical Imaging.

The combination of medical imaging and deep learning has significantly improved diagnostic and prognostic capabilities in the healthcare domain. Nevertheless, the inherent complexity of deep learning models poses challenges in understanding their decision-making processes. Interpretability and visualization techniques have emerged as crucial tools to unravel the black-box nature of these models, providing insights into their inner workings and enhancing trust in their predictions. This survey paper comprehensively examines various interpretation and visualization techniques applied to deep learning models in medical imaging. The paper reviews methodologies, discusses their applications, and evaluates their effectiveness in enhancing the interpretability, reliability, and clinical relevance of deep learning models in medical image analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Imaging
Journal of Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.90
自引率
6.20%
发文量
303
审稿时长
7 weeks
期刊最新文献
AQSA-Algorithm for Automatic Quantification of Spheres Derived from Cancer Cells in Microfluidic Devices. Editorial on the Special Issue "Fluorescence Imaging and Analysis of Cellular Systems". Spatially Localized Visual Perception Estimation by Means of Prosthetic Vision Simulation. MOTH: Memory-Efficient On-the-Fly Tiling of Histological Image Annotations Using QuPath. Anatomical Characteristics of Cervicomedullary Compression on MRI Scans in Children with Achondroplasia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1