Jun Ma PhD , Yao Zhang PhD , Song Gu MSc , Cheng Ge MSc , Shihao Mae BSc , Adamo Young MSc , Cheng Zhu PhD , Prof Xin Yang PhD , Prof Kangkang Meng PhD , Ziyan Huang BSc , Fan Zhang MSc , Yuanke Pan MSc , Shoujin Huang BSc , Jiacheng Wang PhD , Mingze Sun PhD , Prof Rongguo Zhang PhD , Dengqiang Jia PhD , Jae Won Choi MD , Natália Alves MSc , Bram de Wilde PhD , Prof Bo Wang PhD
{"title":"在深度学习辅助的泛癌症腹部器官量化中释放无标记数据的优势:FLARE22 挑战赛。","authors":"Jun Ma PhD , Yao Zhang PhD , Song Gu MSc , Cheng Ge MSc , Shihao Mae BSc , Adamo Young MSc , Cheng Zhu PhD , Prof Xin Yang PhD , Prof Kangkang Meng PhD , Ziyan Huang BSc , Fan Zhang MSc , Yuanke Pan MSc , Shoujin Huang BSc , Jiacheng Wang PhD , Mingze Sun PhD , Prof Rongguo Zhang PhD , Dengqiang Jia PhD , Jae Won Choi MD , Natália Alves MSc , Bram de Wilde PhD , Prof Bo Wang PhD","doi":"10.1016/S2589-7500(24)00154-7","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning has shown great potential to automate abdominal organ segmentation and quantification. However, most existing algorithms rely on expert annotations and do not have comprehensive evaluations in real-world multinational settings. To address these limitations, we organised the FLARE 2022 challenge to benchmark fast, low-resource, and accurate abdominal organ segmentation algorithms. We first constructed an intercontinental abdomen CT dataset from more than 50 clinical research groups. We then independently validated that deep learning algorithms achieved a median dice similarity coefficient (DSC) of 90·0% (IQR 87·4–91·3%) by use of 50 labelled images and 2000 unlabelled images, which can substantially reduce manual annotation costs. The best-performing algorithms successfully generalised to holdout external validation sets, achieving a median DSC of 89·4% (85·2–91·3%), 90·0% (84·3–93·0%), and 88·5% (80·9–91·9%) on North American, European, and Asian cohorts, respectively. These algorithms show the potential to use unlabelled data to boost performance and alleviate annotation shortages for modern artificial intelligence models.</div></div>","PeriodicalId":48534,"journal":{"name":"Lancet Digital Health","volume":"6 11","pages":"Pages e815-e826"},"PeriodicalIF":23.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unleashing the strengths of unlabelled data in deep learning-assisted pan-cancer abdominal organ quantification: the FLARE22 challenge\",\"authors\":\"Jun Ma PhD , Yao Zhang PhD , Song Gu MSc , Cheng Ge MSc , Shihao Mae BSc , Adamo Young MSc , Cheng Zhu PhD , Prof Xin Yang PhD , Prof Kangkang Meng PhD , Ziyan Huang BSc , Fan Zhang MSc , Yuanke Pan MSc , Shoujin Huang BSc , Jiacheng Wang PhD , Mingze Sun PhD , Prof Rongguo Zhang PhD , Dengqiang Jia PhD , Jae Won Choi MD , Natália Alves MSc , Bram de Wilde PhD , Prof Bo Wang PhD\",\"doi\":\"10.1016/S2589-7500(24)00154-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning has shown great potential to automate abdominal organ segmentation and quantification. However, most existing algorithms rely on expert annotations and do not have comprehensive evaluations in real-world multinational settings. To address these limitations, we organised the FLARE 2022 challenge to benchmark fast, low-resource, and accurate abdominal organ segmentation algorithms. We first constructed an intercontinental abdomen CT dataset from more than 50 clinical research groups. We then independently validated that deep learning algorithms achieved a median dice similarity coefficient (DSC) of 90·0% (IQR 87·4–91·3%) by use of 50 labelled images and 2000 unlabelled images, which can substantially reduce manual annotation costs. The best-performing algorithms successfully generalised to holdout external validation sets, achieving a median DSC of 89·4% (85·2–91·3%), 90·0% (84·3–93·0%), and 88·5% (80·9–91·9%) on North American, European, and Asian cohorts, respectively. These algorithms show the potential to use unlabelled data to boost performance and alleviate annotation shortages for modern artificial intelligence models.</div></div>\",\"PeriodicalId\":48534,\"journal\":{\"name\":\"Lancet Digital Health\",\"volume\":\"6 11\",\"pages\":\"Pages e815-e826\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lancet Digital Health\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589750024001547\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lancet Digital Health","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589750024001547","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Unleashing the strengths of unlabelled data in deep learning-assisted pan-cancer abdominal organ quantification: the FLARE22 challenge
Deep learning has shown great potential to automate abdominal organ segmentation and quantification. However, most existing algorithms rely on expert annotations and do not have comprehensive evaluations in real-world multinational settings. To address these limitations, we organised the FLARE 2022 challenge to benchmark fast, low-resource, and accurate abdominal organ segmentation algorithms. We first constructed an intercontinental abdomen CT dataset from more than 50 clinical research groups. We then independently validated that deep learning algorithms achieved a median dice similarity coefficient (DSC) of 90·0% (IQR 87·4–91·3%) by use of 50 labelled images and 2000 unlabelled images, which can substantially reduce manual annotation costs. The best-performing algorithms successfully generalised to holdout external validation sets, achieving a median DSC of 89·4% (85·2–91·3%), 90·0% (84·3–93·0%), and 88·5% (80·9–91·9%) on North American, European, and Asian cohorts, respectively. These algorithms show the potential to use unlabelled data to boost performance and alleviate annotation shortages for modern artificial intelligence models.
期刊介绍:
The Lancet Digital Health publishes important, innovative, and practice-changing research on any topic connected with digital technology in clinical medicine, public health, and global health.
The journal’s open access content crosses subject boundaries, building bridges between health professionals and researchers.By bringing together the most important advances in this multidisciplinary field,The Lancet Digital Health is the most prominent publishing venue in digital health.
We publish a range of content types including Articles,Review, Comment, and Correspondence, contributing to promoting digital technologies in health practice worldwide.