{"title":"人参皂苷Rh1通过糖皮质激素受体调节肝细胞癌的免疫微环境","authors":"Xiong-Hui Wang, Ya-Lan Fu, Yan-Nan Xu, Peng-Cheng Zhang, Tian-Xiao Zheng, Chang-Quan Ling, Ying-Lu Feng","doi":"10.1016/j.joim.2024.09.004","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Ginsenoside Rh1 (G-Rh1) has been confirmed to inhibit the growth of breast cancer and colon cancer, but its therapeutic effect on hepatocellular carcinoma (HCC) is unclear. This study investigates the therapeutic effect of G-Rh1 on HCC as well as the underlying mechanism.</p><p><strong>Methods: </strong>Bioinformatics methods were used to analyze glucocorticoid receptor (GR) expression and the tumor microenvironment in HCC tissues from HCC patients. The effect of G-Rh1 on HCC cells was investigated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The therapeutic effect of G-Rh1 was investigated in vivo using subcutaneous transplantation models in C57BL/6J and nude mice. Additionally, the proportion of infiltrating immune cells in tumors was analyzed using flow cytometry, the GR and major histocompatibility complex class-I (MHC-I) expression of HCC cells after G-Rh1 treatment was analyzed using Western blotting, and G-Rh1-treated Hepa1-6 cells were cocultured with bone marrow-derived dendritic cells and B3Z T cells to further analyze the ability of G-Rh1 to induce dendritic cell (DC) maturation and CD8<sup>+</sup> T cell activation.</p><p><strong>Results: </strong>GR expression was upregulated in HCC tissues, and high GR expression was associated with a worsened immune microenvironment. In vitro studies showed that G-Rh1 had no significant effect on the proliferation of HCC cells, while in vivo studies showed that G-Rh1 exerted antitumor effects in C57BL/6J mice but not in nude mice. Further research revealed that G-Rh1 ameliorated the immunosuppressive tumor microenvironment, thereby enhancing the antitumor effects of lenvatinib by increasing the infiltration of CD8<sup>+</sup> T cells, mature DCs, and MHC-I-positive cells. MHC-I was upregulated by G-Rh1 via GR suppression. Moreover, overexpression of GR abolished the G-Rh1-mediated promotion of MHC-I expression in Huh7 cells, as well as the maturation of DCs and the activation of CD8<sup>+</sup> T cells.</p><p><strong>Conclusion: </strong>G-Rh1 can regulate the immune microenvironment of HCC by targeting GR, thus increasing the antitumor effect of lenvatinib. Please cite this article as: Wang XH, Fu YL, Xu YN, Zhang PC, Zheng TX, Ling CQ, Feng YL. Ginsenoside Rh1 regulates the immune microenvironment of hepatocellular carcinoma via the glucocorticoid receptor. J Integr Med. 2024; Epub ahead of print.</p>","PeriodicalId":48599,"journal":{"name":"Journal of Integrative Medicine-Jim","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ginsenoside Rh1 regulates the immune microenvironment of hepatocellular carcinoma via the glucocorticoid receptor.\",\"authors\":\"Xiong-Hui Wang, Ya-Lan Fu, Yan-Nan Xu, Peng-Cheng Zhang, Tian-Xiao Zheng, Chang-Quan Ling, Ying-Lu Feng\",\"doi\":\"10.1016/j.joim.2024.09.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Ginsenoside Rh1 (G-Rh1) has been confirmed to inhibit the growth of breast cancer and colon cancer, but its therapeutic effect on hepatocellular carcinoma (HCC) is unclear. This study investigates the therapeutic effect of G-Rh1 on HCC as well as the underlying mechanism.</p><p><strong>Methods: </strong>Bioinformatics methods were used to analyze glucocorticoid receptor (GR) expression and the tumor microenvironment in HCC tissues from HCC patients. The effect of G-Rh1 on HCC cells was investigated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The therapeutic effect of G-Rh1 was investigated in vivo using subcutaneous transplantation models in C57BL/6J and nude mice. Additionally, the proportion of infiltrating immune cells in tumors was analyzed using flow cytometry, the GR and major histocompatibility complex class-I (MHC-I) expression of HCC cells after G-Rh1 treatment was analyzed using Western blotting, and G-Rh1-treated Hepa1-6 cells were cocultured with bone marrow-derived dendritic cells and B3Z T cells to further analyze the ability of G-Rh1 to induce dendritic cell (DC) maturation and CD8<sup>+</sup> T cell activation.</p><p><strong>Results: </strong>GR expression was upregulated in HCC tissues, and high GR expression was associated with a worsened immune microenvironment. In vitro studies showed that G-Rh1 had no significant effect on the proliferation of HCC cells, while in vivo studies showed that G-Rh1 exerted antitumor effects in C57BL/6J mice but not in nude mice. Further research revealed that G-Rh1 ameliorated the immunosuppressive tumor microenvironment, thereby enhancing the antitumor effects of lenvatinib by increasing the infiltration of CD8<sup>+</sup> T cells, mature DCs, and MHC-I-positive cells. MHC-I was upregulated by G-Rh1 via GR suppression. Moreover, overexpression of GR abolished the G-Rh1-mediated promotion of MHC-I expression in Huh7 cells, as well as the maturation of DCs and the activation of CD8<sup>+</sup> T cells.</p><p><strong>Conclusion: </strong>G-Rh1 can regulate the immune microenvironment of HCC by targeting GR, thus increasing the antitumor effect of lenvatinib. Please cite this article as: Wang XH, Fu YL, Xu YN, Zhang PC, Zheng TX, Ling CQ, Feng YL. Ginsenoside Rh1 regulates the immune microenvironment of hepatocellular carcinoma via the glucocorticoid receptor. J Integr Med. 2024; Epub ahead of print.</p>\",\"PeriodicalId\":48599,\"journal\":{\"name\":\"Journal of Integrative Medicine-Jim\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Medicine-Jim\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.joim.2024.09.004\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INTEGRATIVE & COMPLEMENTARY MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Medicine-Jim","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.joim.2024.09.004","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
Ginsenoside Rh1 regulates the immune microenvironment of hepatocellular carcinoma via the glucocorticoid receptor.
Objective: Ginsenoside Rh1 (G-Rh1) has been confirmed to inhibit the growth of breast cancer and colon cancer, but its therapeutic effect on hepatocellular carcinoma (HCC) is unclear. This study investigates the therapeutic effect of G-Rh1 on HCC as well as the underlying mechanism.
Methods: Bioinformatics methods were used to analyze glucocorticoid receptor (GR) expression and the tumor microenvironment in HCC tissues from HCC patients. The effect of G-Rh1 on HCC cells was investigated in vitro using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The therapeutic effect of G-Rh1 was investigated in vivo using subcutaneous transplantation models in C57BL/6J and nude mice. Additionally, the proportion of infiltrating immune cells in tumors was analyzed using flow cytometry, the GR and major histocompatibility complex class-I (MHC-I) expression of HCC cells after G-Rh1 treatment was analyzed using Western blotting, and G-Rh1-treated Hepa1-6 cells were cocultured with bone marrow-derived dendritic cells and B3Z T cells to further analyze the ability of G-Rh1 to induce dendritic cell (DC) maturation and CD8+ T cell activation.
Results: GR expression was upregulated in HCC tissues, and high GR expression was associated with a worsened immune microenvironment. In vitro studies showed that G-Rh1 had no significant effect on the proliferation of HCC cells, while in vivo studies showed that G-Rh1 exerted antitumor effects in C57BL/6J mice but not in nude mice. Further research revealed that G-Rh1 ameliorated the immunosuppressive tumor microenvironment, thereby enhancing the antitumor effects of lenvatinib by increasing the infiltration of CD8+ T cells, mature DCs, and MHC-I-positive cells. MHC-I was upregulated by G-Rh1 via GR suppression. Moreover, overexpression of GR abolished the G-Rh1-mediated promotion of MHC-I expression in Huh7 cells, as well as the maturation of DCs and the activation of CD8+ T cells.
Conclusion: G-Rh1 can regulate the immune microenvironment of HCC by targeting GR, thus increasing the antitumor effect of lenvatinib. Please cite this article as: Wang XH, Fu YL, Xu YN, Zhang PC, Zheng TX, Ling CQ, Feng YL. Ginsenoside Rh1 regulates the immune microenvironment of hepatocellular carcinoma via the glucocorticoid receptor. J Integr Med. 2024; Epub ahead of print.
期刊介绍:
The predecessor of JIM is the Journal of Chinese Integrative Medicine (Zhong Xi Yi Jie He Xue Bao). With this new, English-language publication, we are committed to make JIM an international platform for publishing high-quality papers on complementary and alternative medicine (CAM) and an open forum in which the different professions and international scholarly communities can exchange views, share research and their clinical experience, discuss CAM education, and confer about issues and problems in our various disciplines and in CAM as a whole in order to promote integrative medicine.
JIM is indexed/abstracted in: MEDLINE/PubMed, ScienceDirect, Emerging Sources Citation Index (ESCI), Scopus, Embase, Chemical Abstracts (CA), CAB Abstracts, EBSCO, WPRIM, JST China, Chinese Science Citation Database (CSCD), and China National Knowledge Infrastructure (CNKI).
JIM Editorial Office uses ThomsonReuters ScholarOne Manuscripts as submitting and review system (submission link: http://mc03.manuscriptcentral.com/jcim-en).
JIM is published bimonthly. Manuscripts submitted to JIM should be written in English. Article types include but are not limited to randomized controlled and pragmatic trials, translational and patient-centered effectiveness outcome studies, case series and reports, clinical trial protocols, preclinical and basic science studies, systematic reviews and meta-analyses, papers on methodology and CAM history or education, conference proceedings, editorials, commentaries, short communications, book reviews, and letters to the editor.
Our purpose is to publish a prestigious international journal for studies in integrative medicine. To achieve this aim, we seek to publish high-quality papers on any aspects of integrative medicine, such as acupuncture and traditional Chinese medicine, Ayurveda medicine, herbal medicine, homeopathy, nutrition, chiropractic, mind-body medicine, taichi, qigong, meditation, and any other modalities of CAM; our commitment to international scope ensures that research and progress from all regions of the world are widely covered. These ensure that articles published in JIM have the maximum exposure to the international scholarly community.
JIM can help its authors let their papers reach the widest possible range of readers, and let all those who share an interest in their research field be concerned with their study.