Suania Maria do Nascimento Sousa, Josinete Torres Garcias, Marceli Ruani De Oliveira Farias, Allana Laís Alves Lima, Rosiane do Socorro Dos Reis de Sousa, Hellen Kempfer Philippsen, Lucimar Di Paula Dos Santos Madeira, Herve Rogez, Joana Montezano Marques
{"title":"从亚马逊土壤中分离出的根瘤菌减轻了水压力对阿萨伊(Euterpe oleracea Mart.)棕榈幼苗生长的影响。","authors":"Suania Maria do Nascimento Sousa, Josinete Torres Garcias, Marceli Ruani De Oliveira Farias, Allana Laís Alves Lima, Rosiane do Socorro Dos Reis de Sousa, Hellen Kempfer Philippsen, Lucimar Di Paula Dos Santos Madeira, Herve Rogez, Joana Montezano Marques","doi":"10.3390/biology13100757","DOIUrl":null,"url":null,"abstract":"<p><p><i>Euterpe oleracea</i> Mart., also known for its fruit açaí, is a palm native to the Amazon region. The state of Pará, Brazil, accounts for over 90% of açaí production. Demand for the fruit in national and international markets is increasing; however, climate change and diseases such as anthracnose, caused by the fungus <i>Colletotrichum</i> sp., lead to decreased production. To meet demand, measures such as expanding cultivation in upland areas are often adopted, requiring substantial economic investments, particularly in irrigation. Therefore, the aim of this study was to evaluate the potential of açaí rhizobacteria in promoting plant growth (PGPR). Rhizospheric soil samples from floodplain and upland açaí plantations were collected during rainy and dry seasons. Bacterial strains were isolated using the serial dilution method, and subsequent assays evaluated their ability to promote plant growth. Soil analyses indicated that the sampling period influenced the physicochemical properties of both areas, with increases observed during winter for most soil components like organic matter and C/N ratio. A total of 177 bacterial strains were isolated from rhizospheres of açaí trees cultivated in floodplain and upland areas across dry and rainy seasons. Among these strains, 24% produced IAA, 18% synthesized ACC deaminase, 11% mineralized organic phosphate, and 9% solubilized inorganic phosphate, among other characteristics. Interestingly, 88% inhibited the growth of phytopathogenic fungi of the genera <i>Curvularia</i> and <i>Colletotrichum</i>. Analysis under simulated water stress using Polyethylene Glycol 6000 revealed that 23% of the strains exhibited tolerance. Two strains were identified as <i>Bacillus proteolyticus</i> (PP218346) and <i>Priestia aryabhattai</i> (PP218347). Inoculation with these strains increased the speed and percentage of açaí seed germination. When inoculated in consortium, 85% of seeds germinated under severe stress, compared to only 10% in the control treatment. Therefore, these bacteria show potential for use as biofertilizers, enhancing the initial development of açaí plants and contributing to sustainable agricultural practices.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"13 10","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504209/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rhizobacteria Isolated from Amazonian Soils Reduce the Effects of Water Stress on the Growth of Açaí (<i>Euterpe oleracea</i> Mart.) Palm Seedlings.\",\"authors\":\"Suania Maria do Nascimento Sousa, Josinete Torres Garcias, Marceli Ruani De Oliveira Farias, Allana Laís Alves Lima, Rosiane do Socorro Dos Reis de Sousa, Hellen Kempfer Philippsen, Lucimar Di Paula Dos Santos Madeira, Herve Rogez, Joana Montezano Marques\",\"doi\":\"10.3390/biology13100757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Euterpe oleracea</i> Mart., also known for its fruit açaí, is a palm native to the Amazon region. The state of Pará, Brazil, accounts for over 90% of açaí production. Demand for the fruit in national and international markets is increasing; however, climate change and diseases such as anthracnose, caused by the fungus <i>Colletotrichum</i> sp., lead to decreased production. To meet demand, measures such as expanding cultivation in upland areas are often adopted, requiring substantial economic investments, particularly in irrigation. Therefore, the aim of this study was to evaluate the potential of açaí rhizobacteria in promoting plant growth (PGPR). Rhizospheric soil samples from floodplain and upland açaí plantations were collected during rainy and dry seasons. Bacterial strains were isolated using the serial dilution method, and subsequent assays evaluated their ability to promote plant growth. Soil analyses indicated that the sampling period influenced the physicochemical properties of both areas, with increases observed during winter for most soil components like organic matter and C/N ratio. A total of 177 bacterial strains were isolated from rhizospheres of açaí trees cultivated in floodplain and upland areas across dry and rainy seasons. Among these strains, 24% produced IAA, 18% synthesized ACC deaminase, 11% mineralized organic phosphate, and 9% solubilized inorganic phosphate, among other characteristics. Interestingly, 88% inhibited the growth of phytopathogenic fungi of the genera <i>Curvularia</i> and <i>Colletotrichum</i>. Analysis under simulated water stress using Polyethylene Glycol 6000 revealed that 23% of the strains exhibited tolerance. Two strains were identified as <i>Bacillus proteolyticus</i> (PP218346) and <i>Priestia aryabhattai</i> (PP218347). Inoculation with these strains increased the speed and percentage of açaí seed germination. When inoculated in consortium, 85% of seeds germinated under severe stress, compared to only 10% in the control treatment. Therefore, these bacteria show potential for use as biofertilizers, enhancing the initial development of açaí plants and contributing to sustainable agricultural practices.</p>\",\"PeriodicalId\":48624,\"journal\":{\"name\":\"Biology-Basel\",\"volume\":\"13 10\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504209/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biology-Basel\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3390/biology13100757\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology13100757","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Rhizobacteria Isolated from Amazonian Soils Reduce the Effects of Water Stress on the Growth of Açaí (Euterpe oleracea Mart.) Palm Seedlings.
Euterpe oleracea Mart., also known for its fruit açaí, is a palm native to the Amazon region. The state of Pará, Brazil, accounts for over 90% of açaí production. Demand for the fruit in national and international markets is increasing; however, climate change and diseases such as anthracnose, caused by the fungus Colletotrichum sp., lead to decreased production. To meet demand, measures such as expanding cultivation in upland areas are often adopted, requiring substantial economic investments, particularly in irrigation. Therefore, the aim of this study was to evaluate the potential of açaí rhizobacteria in promoting plant growth (PGPR). Rhizospheric soil samples from floodplain and upland açaí plantations were collected during rainy and dry seasons. Bacterial strains were isolated using the serial dilution method, and subsequent assays evaluated their ability to promote plant growth. Soil analyses indicated that the sampling period influenced the physicochemical properties of both areas, with increases observed during winter for most soil components like organic matter and C/N ratio. A total of 177 bacterial strains were isolated from rhizospheres of açaí trees cultivated in floodplain and upland areas across dry and rainy seasons. Among these strains, 24% produced IAA, 18% synthesized ACC deaminase, 11% mineralized organic phosphate, and 9% solubilized inorganic phosphate, among other characteristics. Interestingly, 88% inhibited the growth of phytopathogenic fungi of the genera Curvularia and Colletotrichum. Analysis under simulated water stress using Polyethylene Glycol 6000 revealed that 23% of the strains exhibited tolerance. Two strains were identified as Bacillus proteolyticus (PP218346) and Priestia aryabhattai (PP218347). Inoculation with these strains increased the speed and percentage of açaí seed germination. When inoculated in consortium, 85% of seeds germinated under severe stress, compared to only 10% in the control treatment. Therefore, these bacteria show potential for use as biofertilizers, enhancing the initial development of açaí plants and contributing to sustainable agricultural practices.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.