硅藻糖在调节树突状细胞功能和肿瘤免疫中的作用

IF 7.4 2区 医学 Q1 IMMUNOLOGY Seminars in Immunology Pub Date : 2024-07-01 DOI:10.1016/j.smim.2024.101900
Zélia Silva , Cátia O. Soares , Mariana Barbosa , Angelina S. Palma , Filipa Marcelo , Paula A. Videira
{"title":"硅藻糖在调节树突状细胞功能和肿瘤免疫中的作用","authors":"Zélia Silva ,&nbsp;Cátia O. Soares ,&nbsp;Mariana Barbosa ,&nbsp;Angelina S. Palma ,&nbsp;Filipa Marcelo ,&nbsp;Paula A. Videira","doi":"10.1016/j.smim.2024.101900","DOIUrl":null,"url":null,"abstract":"<div><div>Dendritic cells (DCs) are crucial for initiating immune responses against tumours by presenting antigens to T cells. Glycosylation, particularly sialylation, plays a significant role in regulating cell functions, by modulating protein folding and signalling. This review aimed to provide a comprehensive overview of how sialic acids influence key aspects of DC biology, including maturation, migration, antigen presentation, and T cell interactions. Sialic acids influence DC endocytosis, affecting their ability to uptake and present antigens, while guiding their migration to lymph nodes and inflamed tissues. Removing sialic acids enhances DC-mediated antigen presentation to T cells, potentially boosting immune responses. Additionally, sialylated glycans on DCs modulate immune checkpoints, which can impact tumour immunity. Hypersialylation of tumour mucins further promotes immune evasion by interacting with DCs. Understanding the interplay between sialylation and DC functions offers promising avenues for enhancing cancer immunotherapy.</div></div>","PeriodicalId":49546,"journal":{"name":"Seminars in Immunology","volume":null,"pages":null},"PeriodicalIF":7.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The role of sialoglycans in modulating dendritic cell function and tumour immunity\",\"authors\":\"Zélia Silva ,&nbsp;Cátia O. Soares ,&nbsp;Mariana Barbosa ,&nbsp;Angelina S. Palma ,&nbsp;Filipa Marcelo ,&nbsp;Paula A. Videira\",\"doi\":\"10.1016/j.smim.2024.101900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Dendritic cells (DCs) are crucial for initiating immune responses against tumours by presenting antigens to T cells. Glycosylation, particularly sialylation, plays a significant role in regulating cell functions, by modulating protein folding and signalling. This review aimed to provide a comprehensive overview of how sialic acids influence key aspects of DC biology, including maturation, migration, antigen presentation, and T cell interactions. Sialic acids influence DC endocytosis, affecting their ability to uptake and present antigens, while guiding their migration to lymph nodes and inflamed tissues. Removing sialic acids enhances DC-mediated antigen presentation to T cells, potentially boosting immune responses. Additionally, sialylated glycans on DCs modulate immune checkpoints, which can impact tumour immunity. Hypersialylation of tumour mucins further promotes immune evasion by interacting with DCs. Understanding the interplay between sialylation and DC functions offers promising avenues for enhancing cancer immunotherapy.</div></div>\",\"PeriodicalId\":49546,\"journal\":{\"name\":\"Seminars in Immunology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seminars in Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1044532324000381\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seminars in Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1044532324000381","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

树突状细胞(DC)通过向 T 细胞展示抗原,对启动针对肿瘤的免疫反应至关重要。糖基化,尤其是ialylation,通过调节蛋白质折叠和信号传导,在调节细胞功能方面发挥着重要作用。本综述旨在全面概述硅烷酸如何影响直流电生物学的关键方面,包括成熟、迁移、抗原呈递和 T 细胞相互作用。硅酸影响直流细胞的内吞作用,影响其摄取和呈现抗原的能力,同时引导其向淋巴结和炎症组织迁移。去除ialic酸可增强DC介导的向T细胞呈递抗原的能力,从而增强免疫反应。此外,DC 上的糖基化聚糖还能调节免疫检查点,从而影响肿瘤免疫。肿瘤粘蛋白的高ialylation通过与DC相互作用,进一步促进免疫逃避。了解糖基化与直流电功能之间的相互作用为加强癌症免疫疗法提供了有希望的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The role of sialoglycans in modulating dendritic cell function and tumour immunity
Dendritic cells (DCs) are crucial for initiating immune responses against tumours by presenting antigens to T cells. Glycosylation, particularly sialylation, plays a significant role in regulating cell functions, by modulating protein folding and signalling. This review aimed to provide a comprehensive overview of how sialic acids influence key aspects of DC biology, including maturation, migration, antigen presentation, and T cell interactions. Sialic acids influence DC endocytosis, affecting their ability to uptake and present antigens, while guiding their migration to lymph nodes and inflamed tissues. Removing sialic acids enhances DC-mediated antigen presentation to T cells, potentially boosting immune responses. Additionally, sialylated glycans on DCs modulate immune checkpoints, which can impact tumour immunity. Hypersialylation of tumour mucins further promotes immune evasion by interacting with DCs. Understanding the interplay between sialylation and DC functions offers promising avenues for enhancing cancer immunotherapy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Seminars in Immunology
Seminars in Immunology 医学-免疫学
CiteScore
11.40
自引率
1.30%
发文量
50
审稿时长
89 days
期刊介绍: Seminars in Immunology is a specialized review journal that serves as a valuable resource for scientists in the field of immunology. The journal's approach is thematic, with each issue dedicated to a specific topic of significant interest to immunologists. It covers a wide range of research areas, from the molecular and cellular foundations of the immune response to the potential for its manipulation, highlighting recent advancements in these areas. Each thematic issue is curated by a guest editor, who is recognized as an expert in the field internationally. The content of each issue typically includes six to eight authoritative invited reviews, which delve into various aspects of the chosen topic. The goal of these reviews is to provide a comprehensive, coherent, and engaging overview of the subject matter, ensuring that the information is presented in a timely manner to maintain its relevance. The journal's commitment to quality and timeliness is further supported by its inclusion in the Scopus database, which is a leading abstract and citation database of peer-reviewed literature. Being indexed in Scopus helps to ensure that the journal's content is accessible to a broad audience of researchers and professionals in immunology and related fields.
期刊最新文献
ABO blood groups and galectins: Implications in transfusion medicine and innate immunity Shaping hematopoietic cell ecosystems through galectin-glycan interactions Sialic acid and Siglec receptors in tumor immunity and immunotherapy The role of sialoglycans in modulating dendritic cell function and tumour immunity NGS data analysis for molecular diagnosis of Inborn Errors of Immunity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1