Zixiao Lu , Kai Tang , Yi Wu , Xiaoxuan Zhang , Ziqi An , Xiongfeng Zhu , Qianjin Feng , Yinghua Zhao
{"title":"BreasTDLUSeg:在组织病理学全切片图像上分割乳腺末端导管小叶单元的粗到细框架。","authors":"Zixiao Lu , Kai Tang , Yi Wu , Xiaoxuan Zhang , Ziqi An , Xiongfeng Zhu , Qianjin Feng , Yinghua Zhao","doi":"10.1016/j.compmedimag.2024.102432","DOIUrl":null,"url":null,"abstract":"<div><div>Automatic segmentation of breast terminal duct lobular units (TDLUs) on histopathological whole-slide images (WSIs) is crucial for the quantitative evaluation of TDLUs in the diagnostic and prognostic analysis of breast cancer. However, TDLU segmentation remains a great challenge due to its highly heterogeneous sizes, structures, and morphologies as well as the small areas on WSIs. In this study, we propose BreasTDLUSeg, an efficient coarse-to-fine two-stage framework based on multi-scale attention to achieve localization and precise segmentation of TDLUs on hematoxylin and eosin (H&E)-stained WSIs. BreasTDLUSeg consists of two networks: a superpatch-based patch-level classification network (SPPC-Net) and a patch-based pixel-level segmentation network (PPS-Net). SPPC-Net takes a superpatch as input and adopts a sub-region classification head to classify each patch within the superpatch as TDLU positive or negative. PPS-Net takes the TDLU positive patches derived from SPPC-Net as input. PPS-Net deploys a multi-scale CNN-Transformer as an encoder to learn enhanced multi-scale morphological representations and an upsampler to generate pixel-wise segmentation masks for the TDLU positive patches. We also constructed two breast cancer TDLU datasets containing a total of 530 superpatch images with patch-level annotations and 2322 patch images with pixel-level annotations to enable the development of TDLU segmentation methods. Experiments on the two datasets demonstrate that BreasTDLUSeg outperforms other state-of-the-art methods with the highest Dice similarity coefficients of 79.97% and 92.93%, respectively. The proposed method shows great potential to assist pathologists in the pathological analysis of breast cancer. An open-source implementation of our approach can be found at <span><span>https://github.com/Dian-kai/BreasTDLUSeg</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"118 ","pages":"Article 102432"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BreasTDLUSeg: A coarse-to-fine framework for segmentation of breast terminal duct lobular units on histopathological whole-slide images\",\"authors\":\"Zixiao Lu , Kai Tang , Yi Wu , Xiaoxuan Zhang , Ziqi An , Xiongfeng Zhu , Qianjin Feng , Yinghua Zhao\",\"doi\":\"10.1016/j.compmedimag.2024.102432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Automatic segmentation of breast terminal duct lobular units (TDLUs) on histopathological whole-slide images (WSIs) is crucial for the quantitative evaluation of TDLUs in the diagnostic and prognostic analysis of breast cancer. However, TDLU segmentation remains a great challenge due to its highly heterogeneous sizes, structures, and morphologies as well as the small areas on WSIs. In this study, we propose BreasTDLUSeg, an efficient coarse-to-fine two-stage framework based on multi-scale attention to achieve localization and precise segmentation of TDLUs on hematoxylin and eosin (H&E)-stained WSIs. BreasTDLUSeg consists of two networks: a superpatch-based patch-level classification network (SPPC-Net) and a patch-based pixel-level segmentation network (PPS-Net). SPPC-Net takes a superpatch as input and adopts a sub-region classification head to classify each patch within the superpatch as TDLU positive or negative. PPS-Net takes the TDLU positive patches derived from SPPC-Net as input. PPS-Net deploys a multi-scale CNN-Transformer as an encoder to learn enhanced multi-scale morphological representations and an upsampler to generate pixel-wise segmentation masks for the TDLU positive patches. We also constructed two breast cancer TDLU datasets containing a total of 530 superpatch images with patch-level annotations and 2322 patch images with pixel-level annotations to enable the development of TDLU segmentation methods. Experiments on the two datasets demonstrate that BreasTDLUSeg outperforms other state-of-the-art methods with the highest Dice similarity coefficients of 79.97% and 92.93%, respectively. The proposed method shows great potential to assist pathologists in the pathological analysis of breast cancer. An open-source implementation of our approach can be found at <span><span>https://github.com/Dian-kai/BreasTDLUSeg</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"118 \",\"pages\":\"Article 102432\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124001095\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001095","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
BreasTDLUSeg: A coarse-to-fine framework for segmentation of breast terminal duct lobular units on histopathological whole-slide images
Automatic segmentation of breast terminal duct lobular units (TDLUs) on histopathological whole-slide images (WSIs) is crucial for the quantitative evaluation of TDLUs in the diagnostic and prognostic analysis of breast cancer. However, TDLU segmentation remains a great challenge due to its highly heterogeneous sizes, structures, and morphologies as well as the small areas on WSIs. In this study, we propose BreasTDLUSeg, an efficient coarse-to-fine two-stage framework based on multi-scale attention to achieve localization and precise segmentation of TDLUs on hematoxylin and eosin (H&E)-stained WSIs. BreasTDLUSeg consists of two networks: a superpatch-based patch-level classification network (SPPC-Net) and a patch-based pixel-level segmentation network (PPS-Net). SPPC-Net takes a superpatch as input and adopts a sub-region classification head to classify each patch within the superpatch as TDLU positive or negative. PPS-Net takes the TDLU positive patches derived from SPPC-Net as input. PPS-Net deploys a multi-scale CNN-Transformer as an encoder to learn enhanced multi-scale morphological representations and an upsampler to generate pixel-wise segmentation masks for the TDLU positive patches. We also constructed two breast cancer TDLU datasets containing a total of 530 superpatch images with patch-level annotations and 2322 patch images with pixel-level annotations to enable the development of TDLU segmentation methods. Experiments on the two datasets demonstrate that BreasTDLUSeg outperforms other state-of-the-art methods with the highest Dice similarity coefficients of 79.97% and 92.93%, respectively. The proposed method shows great potential to assist pathologists in the pathological analysis of breast cancer. An open-source implementation of our approach can be found at https://github.com/Dian-kai/BreasTDLUSeg.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.