Lauren D. Hagenstein , Joseph Jenkins , Colby Adamson , Jourdain Dong , John Moore , Jing Gao
{"title":"用超声归一化局部方差评估代谢功能障碍相关脂肪肝。","authors":"Lauren D. Hagenstein , Joseph Jenkins , Colby Adamson , Jourdain Dong , John Moore , Jing Gao","doi":"10.1016/j.clinimag.2024.110326","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><div>Increased prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) highlights a desire for screening with liver ultrasound normalized local variance (NLV). We aimed to assess variations in NLV values measured at different sampling depths and discuss common technical considerations in measuring liver NLV.</div></div><div><h3>Methods</h3><div>We retrospectively measured liver NLVs at variable depths on ultrasound images pre-recorded in 116 participants who underwent liver magnetic resonance imaging-proton density fat fraction (MRI-PDFF) and ultrasound to screen for MASLD. Liver NLVs were measured and differences at variable depths were tested using one-way analysis of variance (ANOVA) and multiple paired comparisons using post hoc Tukey honestly significant difference (HSD), Scheffé, Bonferroni, and Holm multiple comparisons. Diagnostic performance of NLV values were analyzed by area under the receiver operating characteristic (AUROC) curve.</div></div><div><h3>Results</h3><div>The NLV measured at a depth of 10 cm significantly differed from those measured near the liver capsule and at depths of 6 cm and 8 cm (<em>p</em> < 0.001) from the skin. There was no significant difference in NLV value in other paired groups (<em>p</em> > 0.05). The difference in the area under AUROCs for NLVs measured at variable depths was not significant (<em>p</em> > 0.05).</div></div><div><h3>Conclusions</h3><div>The best diagnostic performance of liver NLV was measured at depth of 8 cm from the skin, although NLV measured at variable depth showed similar diagnostic performance for assessing ≥ mild hepatic steatosis. The study results provide a reference that can be used in the development of standardized scanning protocols and technical considerations in measuring liver NLV.</div></div>","PeriodicalId":50680,"journal":{"name":"Clinical Imaging","volume":"116 ","pages":"Article 110326"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrasound normalized local variance to assess metabolic dysfunction-associated steatotic liver disease\",\"authors\":\"Lauren D. Hagenstein , Joseph Jenkins , Colby Adamson , Jourdain Dong , John Moore , Jing Gao\",\"doi\":\"10.1016/j.clinimag.2024.110326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Purpose</h3><div>Increased prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) highlights a desire for screening with liver ultrasound normalized local variance (NLV). We aimed to assess variations in NLV values measured at different sampling depths and discuss common technical considerations in measuring liver NLV.</div></div><div><h3>Methods</h3><div>We retrospectively measured liver NLVs at variable depths on ultrasound images pre-recorded in 116 participants who underwent liver magnetic resonance imaging-proton density fat fraction (MRI-PDFF) and ultrasound to screen for MASLD. Liver NLVs were measured and differences at variable depths were tested using one-way analysis of variance (ANOVA) and multiple paired comparisons using post hoc Tukey honestly significant difference (HSD), Scheffé, Bonferroni, and Holm multiple comparisons. Diagnostic performance of NLV values were analyzed by area under the receiver operating characteristic (AUROC) curve.</div></div><div><h3>Results</h3><div>The NLV measured at a depth of 10 cm significantly differed from those measured near the liver capsule and at depths of 6 cm and 8 cm (<em>p</em> < 0.001) from the skin. There was no significant difference in NLV value in other paired groups (<em>p</em> > 0.05). The difference in the area under AUROCs for NLVs measured at variable depths was not significant (<em>p</em> > 0.05).</div></div><div><h3>Conclusions</h3><div>The best diagnostic performance of liver NLV was measured at depth of 8 cm from the skin, although NLV measured at variable depth showed similar diagnostic performance for assessing ≥ mild hepatic steatosis. The study results provide a reference that can be used in the development of standardized scanning protocols and technical considerations in measuring liver NLV.</div></div>\",\"PeriodicalId\":50680,\"journal\":{\"name\":\"Clinical Imaging\",\"volume\":\"116 \",\"pages\":\"Article 110326\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0899707124002560\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0899707124002560","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Ultrasound normalized local variance to assess metabolic dysfunction-associated steatotic liver disease
Purpose
Increased prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) highlights a desire for screening with liver ultrasound normalized local variance (NLV). We aimed to assess variations in NLV values measured at different sampling depths and discuss common technical considerations in measuring liver NLV.
Methods
We retrospectively measured liver NLVs at variable depths on ultrasound images pre-recorded in 116 participants who underwent liver magnetic resonance imaging-proton density fat fraction (MRI-PDFF) and ultrasound to screen for MASLD. Liver NLVs were measured and differences at variable depths were tested using one-way analysis of variance (ANOVA) and multiple paired comparisons using post hoc Tukey honestly significant difference (HSD), Scheffé, Bonferroni, and Holm multiple comparisons. Diagnostic performance of NLV values were analyzed by area under the receiver operating characteristic (AUROC) curve.
Results
The NLV measured at a depth of 10 cm significantly differed from those measured near the liver capsule and at depths of 6 cm and 8 cm (p < 0.001) from the skin. There was no significant difference in NLV value in other paired groups (p > 0.05). The difference in the area under AUROCs for NLVs measured at variable depths was not significant (p > 0.05).
Conclusions
The best diagnostic performance of liver NLV was measured at depth of 8 cm from the skin, although NLV measured at variable depth showed similar diagnostic performance for assessing ≥ mild hepatic steatosis. The study results provide a reference that can be used in the development of standardized scanning protocols and technical considerations in measuring liver NLV.
期刊介绍:
The mission of Clinical Imaging is to publish, in a timely manner, the very best radiology research from the United States and around the world with special attention to the impact of medical imaging on patient care. The journal''s publications cover all imaging modalities, radiology issues related to patients, policy and practice improvements, and clinically-oriented imaging physics and informatics. The journal is a valuable resource for practicing radiologists, radiologists-in-training and other clinicians with an interest in imaging. Papers are carefully peer-reviewed and selected by our experienced subject editors who are leading experts spanning the range of imaging sub-specialties, which include:
-Body Imaging-
Breast Imaging-
Cardiothoracic Imaging-
Imaging Physics and Informatics-
Molecular Imaging and Nuclear Medicine-
Musculoskeletal and Emergency Imaging-
Neuroradiology-
Practice, Policy & Education-
Pediatric Imaging-
Vascular and Interventional Radiology