Haitham Sobhy , Marco De Rovere , Amina Ait-Ammar , Muhammad Kashif , Clementine Wallet , Fadoua Daouad , Thomas Loustau , Carine Van Lint , Christian Schwartz , Olivier Rohr
{"title":"BCL11b 与涉及 RNA 处理和发育疾病的 RNA 和蛋白质相互作用。","authors":"Haitham Sobhy , Marco De Rovere , Amina Ait-Ammar , Muhammad Kashif , Clementine Wallet , Fadoua Daouad , Thomas Loustau , Carine Van Lint , Christian Schwartz , Olivier Rohr","doi":"10.1016/j.bbagrm.2024.195065","DOIUrl":null,"url":null,"abstract":"<div><div>BCL11b is a transcription regulator and a tumor suppressor involved in lymphomagenesis, central nervous system (CNS) and immune system developments. BCL11b favors persistence of HIV latency and contributes to control cell cycle, differentiation and apoptosis in multiple organisms and cell models. Although BCL11b recruits the non-coding RNA 7SK and epigenetic enzymes to regulate gene expression, BCL11b-associated ribonucleoprotein complexes are unknown. Thanks to CLIP-seq and quantitative LC-MS/MS mass spectrometry approaches complemented with systems biology validations, we show that BCL11b interacts with RNA splicing and non-sense-mediated decay proteins, including FUS, SMN1, UPF1 and Drosha, which may contribute in isoform selection of protein-coding RNA isoforms from noncoding-RNAs isoforms (retained introns or nonsense mediated RNA). Interestingly, BCL11b binds to RNA transcripts and proteins encoded by the same genes (FUS, ESWR1, CHD and Tubulin). Our study highlights that BCL11b targets RNA processing and splicing proteins, and RNAs that implicate cell cycle, development, neurodegenerative, and cancer pathways. These findings will help future mechanistic understanding of developmental disorders.</div></div><div><h3>Importance</h3><div>BCL11b-protein and RNA interactomes reveal BLC11b association with specific nucleoprotein complexes involved in the regulation of genes expression.</div><div>BCL11b interacts with RNA processing and splicing proteins.</div></div>","PeriodicalId":55382,"journal":{"name":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","volume":"1867 4","pages":"Article 195065"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BCL11b interacts with RNA and proteins involved in RNA processing and developmental diseases\",\"authors\":\"Haitham Sobhy , Marco De Rovere , Amina Ait-Ammar , Muhammad Kashif , Clementine Wallet , Fadoua Daouad , Thomas Loustau , Carine Van Lint , Christian Schwartz , Olivier Rohr\",\"doi\":\"10.1016/j.bbagrm.2024.195065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>BCL11b is a transcription regulator and a tumor suppressor involved in lymphomagenesis, central nervous system (CNS) and immune system developments. BCL11b favors persistence of HIV latency and contributes to control cell cycle, differentiation and apoptosis in multiple organisms and cell models. Although BCL11b recruits the non-coding RNA 7SK and epigenetic enzymes to regulate gene expression, BCL11b-associated ribonucleoprotein complexes are unknown. Thanks to CLIP-seq and quantitative LC-MS/MS mass spectrometry approaches complemented with systems biology validations, we show that BCL11b interacts with RNA splicing and non-sense-mediated decay proteins, including FUS, SMN1, UPF1 and Drosha, which may contribute in isoform selection of protein-coding RNA isoforms from noncoding-RNAs isoforms (retained introns or nonsense mediated RNA). Interestingly, BCL11b binds to RNA transcripts and proteins encoded by the same genes (FUS, ESWR1, CHD and Tubulin). Our study highlights that BCL11b targets RNA processing and splicing proteins, and RNAs that implicate cell cycle, development, neurodegenerative, and cancer pathways. These findings will help future mechanistic understanding of developmental disorders.</div></div><div><h3>Importance</h3><div>BCL11b-protein and RNA interactomes reveal BLC11b association with specific nucleoprotein complexes involved in the regulation of genes expression.</div><div>BCL11b interacts with RNA processing and splicing proteins.</div></div>\",\"PeriodicalId\":55382,\"journal\":{\"name\":\"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms\",\"volume\":\"1867 4\",\"pages\":\"Article 195065\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874939924000610\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimica et Biophysica Acta-Gene Regulatory Mechanisms","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874939924000610","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
BCL11b interacts with RNA and proteins involved in RNA processing and developmental diseases
BCL11b is a transcription regulator and a tumor suppressor involved in lymphomagenesis, central nervous system (CNS) and immune system developments. BCL11b favors persistence of HIV latency and contributes to control cell cycle, differentiation and apoptosis in multiple organisms and cell models. Although BCL11b recruits the non-coding RNA 7SK and epigenetic enzymes to regulate gene expression, BCL11b-associated ribonucleoprotein complexes are unknown. Thanks to CLIP-seq and quantitative LC-MS/MS mass spectrometry approaches complemented with systems biology validations, we show that BCL11b interacts with RNA splicing and non-sense-mediated decay proteins, including FUS, SMN1, UPF1 and Drosha, which may contribute in isoform selection of protein-coding RNA isoforms from noncoding-RNAs isoforms (retained introns or nonsense mediated RNA). Interestingly, BCL11b binds to RNA transcripts and proteins encoded by the same genes (FUS, ESWR1, CHD and Tubulin). Our study highlights that BCL11b targets RNA processing and splicing proteins, and RNAs that implicate cell cycle, development, neurodegenerative, and cancer pathways. These findings will help future mechanistic understanding of developmental disorders.
Importance
BCL11b-protein and RNA interactomes reveal BLC11b association with specific nucleoprotein complexes involved in the regulation of genes expression.
BCL11b interacts with RNA processing and splicing proteins.
期刊介绍:
BBA Gene Regulatory Mechanisms includes reports that describe novel insights into mechanisms of transcriptional, post-transcriptional and translational gene regulation. Special emphasis is placed on papers that identify epigenetic mechanisms of gene regulation, including chromatin, modification, and remodeling. This section also encompasses mechanistic studies of regulatory proteins and protein complexes; regulatory or mechanistic aspects of RNA processing; regulation of expression by small RNAs; genomic analysis of gene expression patterns; and modeling of gene regulatory pathways. Papers describing gene promoters, enhancers, silencers or other regulatory DNA regions must incorporate significant functions studies.