用于增强假新闻检测的文本图像多模态融合模型。

IF 2.6 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES Science Progress Pub Date : 2024-10-01 DOI:10.1177/00368504241292685
Szu-Yin Lin, Yen-Chiu Chen, Yu-Han Chang, Shih-Hsin Lo, Kuo-Ming Chao
{"title":"用于增强假新闻检测的文本图像多模态融合模型。","authors":"Szu-Yin Lin, Yen-Chiu Chen, Yu-Han Chang, Shih-Hsin Lo, Kuo-Ming Chao","doi":"10.1177/00368504241292685","DOIUrl":null,"url":null,"abstract":"<p><p>In the era of rapid internet expansion and technological progress, discerning real from fake news poses a growing challenge, exposing users to potential misinformation. The existing literature primarily focuses on analyzing individual features in fake news, overlooking multimodal feature fusion recognition. Compared to single-modal approaches, multimodal fusion allows for a more comprehensive and enriched capture of information from different data modalities (such as text and images), thereby improving the performance and effectiveness of the model. This study proposes a model using multimodal fusion to identify fake news, aiming to curb misinformation. The framework integrates textual and visual information, using early fusion, joint fusion and late fusion strategies to combine them. The proposed framework processes textual and visual information through data cleaning and feature extraction before classification. Fake news classification is accomplished through a model, achieving accuracy of 85% and 90% in the Gossipcop and Fakeddit datasets, with F1-scores of 90% and 88%, showcasing its performance. The study presents outcomes across different training periods, demonstrating the effectiveness of multimodal fusion in combining text and image recognition for combating fake news. This research contributes significantly to addressing the critical issue of misinformation, emphasizing a comprehensive approach for detection accuracy enhancement.</p>","PeriodicalId":56061,"journal":{"name":"Science Progress","volume":"107 4","pages":"368504241292685"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500224/pdf/","citationCount":"0","resultStr":"{\"title\":\"Text-image multimodal fusion model for enhanced fake news detection.\",\"authors\":\"Szu-Yin Lin, Yen-Chiu Chen, Yu-Han Chang, Shih-Hsin Lo, Kuo-Ming Chao\",\"doi\":\"10.1177/00368504241292685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the era of rapid internet expansion and technological progress, discerning real from fake news poses a growing challenge, exposing users to potential misinformation. The existing literature primarily focuses on analyzing individual features in fake news, overlooking multimodal feature fusion recognition. Compared to single-modal approaches, multimodal fusion allows for a more comprehensive and enriched capture of information from different data modalities (such as text and images), thereby improving the performance and effectiveness of the model. This study proposes a model using multimodal fusion to identify fake news, aiming to curb misinformation. The framework integrates textual and visual information, using early fusion, joint fusion and late fusion strategies to combine them. The proposed framework processes textual and visual information through data cleaning and feature extraction before classification. Fake news classification is accomplished through a model, achieving accuracy of 85% and 90% in the Gossipcop and Fakeddit datasets, with F1-scores of 90% and 88%, showcasing its performance. The study presents outcomes across different training periods, demonstrating the effectiveness of multimodal fusion in combining text and image recognition for combating fake news. This research contributes significantly to addressing the critical issue of misinformation, emphasizing a comprehensive approach for detection accuracy enhancement.</p>\",\"PeriodicalId\":56061,\"journal\":{\"name\":\"Science Progress\",\"volume\":\"107 4\",\"pages\":\"368504241292685\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500224/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Progress\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1177/00368504241292685\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Progress","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1177/00368504241292685","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在互联网快速发展和技术进步的时代,辨别真假新闻构成了越来越大的挑战,使用户面临潜在的错误信息。现有文献主要侧重于分析假新闻中的单个特征,忽视了多模态特征融合识别。与单模态方法相比,多模态融合可以更全面、更丰富地捕捉不同数据模态(如文本和图像)的信息,从而提高模型的性能和有效性。本研究提出了一种利用多模态融合识别假新闻的模型,旨在遏制错误信息。该框架整合了文本和视觉信息,使用早期融合、联合融合和后期融合策略将它们结合起来。在分类之前,拟议框架通过数据清理和特征提取来处理文本和视觉信息。假新闻分类是通过一个模型完成的,在 Gossipcop 和 Fakeddit 数据集上的准确率分别达到 85% 和 90%,F1 分数分别为 90% 和 88%,充分展示了该模型的性能。该研究展示了不同训练期的结果,证明了多模态融合在结合文本和图像识别打击假新闻方面的有效性。这项研究为解决虚假信息这一关键问题做出了重大贡献,强调了提高检测准确性的综合方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Text-image multimodal fusion model for enhanced fake news detection.

In the era of rapid internet expansion and technological progress, discerning real from fake news poses a growing challenge, exposing users to potential misinformation. The existing literature primarily focuses on analyzing individual features in fake news, overlooking multimodal feature fusion recognition. Compared to single-modal approaches, multimodal fusion allows for a more comprehensive and enriched capture of information from different data modalities (such as text and images), thereby improving the performance and effectiveness of the model. This study proposes a model using multimodal fusion to identify fake news, aiming to curb misinformation. The framework integrates textual and visual information, using early fusion, joint fusion and late fusion strategies to combine them. The proposed framework processes textual and visual information through data cleaning and feature extraction before classification. Fake news classification is accomplished through a model, achieving accuracy of 85% and 90% in the Gossipcop and Fakeddit datasets, with F1-scores of 90% and 88%, showcasing its performance. The study presents outcomes across different training periods, demonstrating the effectiveness of multimodal fusion in combining text and image recognition for combating fake news. This research contributes significantly to addressing the critical issue of misinformation, emphasizing a comprehensive approach for detection accuracy enhancement.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Progress
Science Progress Multidisciplinary-Multidisciplinary
CiteScore
3.80
自引率
0.00%
发文量
119
期刊介绍: Science Progress has for over 100 years been a highly regarded review publication in science, technology and medicine. Its objective is to excite the readers'' interest in areas with which they may not be fully familiar but which could facilitate their interest, or even activity, in a cognate field.
期刊最新文献
A voltage mode grounded capacitance multiplier with widely tunable gain for ultra-low cutoff frequency filter. Appropriate dose of tranexamic acid in the topical treatment of anterior epistaxis, 500 mg vs 1000 mg: A double-blind randomized controlled trial. Research status and prospect of flexible optimization design methodology of propeller CNC polishing machines. Sliding mode control with self-adaptive parameters of a 5-DOF hybrid robot. Spoofing attack recognition for GNSS-based train positioning using a BO-LightGBM method.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1