{"title":"ERMCS Ca2+ 传输促进细胞分裂。","authors":"Muniswamy Madesh, Neelanjan Vishnu, Dhanendra Tomar","doi":"10.1016/j.tcb.2024.10.002","DOIUrl":null,"url":null,"abstract":"<p><p>Mitosis is a cellular process that demands high energy, but it was previously unclear how this process is linked with mitochondrial ATP production. Zhao et al. describe how during mitosis, the lamin B receptor migrates to the ER membrane to enhance ER-mitochondria contact sites, coordinating Ca<sup>2+</sup> surges that increase ATP production necessary for cell division.</p>","PeriodicalId":56085,"journal":{"name":"Trends in Cell Biology","volume":" ","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ERMCS Ca<sup>2+</sup> transmission fuels cell division.\",\"authors\":\"Muniswamy Madesh, Neelanjan Vishnu, Dhanendra Tomar\",\"doi\":\"10.1016/j.tcb.2024.10.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitosis is a cellular process that demands high energy, but it was previously unclear how this process is linked with mitochondrial ATP production. Zhao et al. describe how during mitosis, the lamin B receptor migrates to the ER membrane to enhance ER-mitochondria contact sites, coordinating Ca<sup>2+</sup> surges that increase ATP production necessary for cell division.</p>\",\"PeriodicalId\":56085,\"journal\":{\"name\":\"Trends in Cell Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tcb.2024.10.002\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tcb.2024.10.002","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
有丝分裂是一个需要高能量的细胞过程,但以前并不清楚这一过程与线粒体 ATP 的产生是如何联系在一起的。Zhao 等人描述了在有丝分裂过程中,层粘连蛋白 B 受体如何迁移到 ER 膜,以增强 ER 与线粒体的接触点,协调 Ca2+ 激增,从而增加细胞分裂所需的 ATP 生成。
Mitosis is a cellular process that demands high energy, but it was previously unclear how this process is linked with mitochondrial ATP production. Zhao et al. describe how during mitosis, the lamin B receptor migrates to the ER membrane to enhance ER-mitochondria contact sites, coordinating Ca2+ surges that increase ATP production necessary for cell division.
期刊介绍:
Trends in Cell Biology stands as a prominent review journal in molecular and cell biology. Monthly review articles track the current breadth and depth of research in cell biology, reporting on emerging developments and integrating various methods, disciplines, and principles. Beyond Reviews, the journal features Opinion articles that follow trends, offer innovative ideas, and provide insights into the implications of new developments, suggesting future directions. All articles are commissioned from leading scientists and undergo rigorous peer-review to ensure balance and accuracy.