用于体外评估清洁产品呼吸道刺激性的新方法(NAMs):研讨会报告。

IF 3.6 Q2 TOXICOLOGY Frontiers in toxicology Pub Date : 2024-10-08 eCollection Date: 2024-01-01 DOI:10.3389/ftox.2024.1431790
Lynne T Haber, Mark A Bradley, Amanda N Buerger, Holger Behrsing, Sabina Burla, Phillip W Clapp, Scott Dotson, Casey Fisher, Keith R Genco, Francis H Kruszewski, Shaun D McCullough, Kathryn E Page, Vivek Patel, Nathan Pechacek, Clive Roper, Monita Sharma, Annie M Jarabek
{"title":"用于体外评估清洁产品呼吸道刺激性的新方法(NAMs):研讨会报告。","authors":"Lynne T Haber, Mark A Bradley, Amanda N Buerger, Holger Behrsing, Sabina Burla, Phillip W Clapp, Scott Dotson, Casey Fisher, Keith R Genco, Francis H Kruszewski, Shaun D McCullough, Kathryn E Page, Vivek Patel, Nathan Pechacek, Clive Roper, Monita Sharma, Annie M Jarabek","doi":"10.3389/ftox.2024.1431790","DOIUrl":null,"url":null,"abstract":"<p><p>The use of <i>in vitro</i> new approach methodologies (NAMs) to assess respiratory irritation depends on several factors, including the specifics of exposure methods and cell/tissue-based test systems. This topic was examined in the context of human health risk assessment for cleaning products at a 1-day public workshop held on 2 March 2023, organized by the American Cleaning Institute<sup>®</sup> (ACI). The goals of this workshop were to (1) review <i>in vitro</i> NAMs for evaluation of respiratory irritation, (2) examine different perspectives on current challenges and suggested solutions, and (3) publish a manuscript of the proceedings. Targeted sessions focused on exposure methods, <i>in vitro</i> cell/tissue test systems, and application to human health risk assessment. The importance of characterization of assays and development of reporting standards was noted throughout the workshop. The exposure methods session emphasized that the appropriate exposure system design depends on the purpose of the assessment. This is particularly important given the many dosimetry and technical considerations affecting relevance and translation of results to human exposure scenarios. Discussion in the <i>in vitro</i> cell/tissue test systems session focused on the wide variety of cell systems with varying suitability for evaluating key mechanistic steps, such as molecular initiating events (MIEs) and key events (KEs) likely present in any putative respiratory irritation adverse outcome pathway (AOP). This suggests the opportunity to further develop guidance around <i>in vitro</i> cell/tissue test system endpoint selection, assay design, characterization and validation, and analytics that provide information about a given assay's utility. The session on applications for human health protection emphasized using mechanistic understanding to inform the choice of test systems and integration of NAMs-derived data with other data sources (e.g., physicochemical properties, exposure information, and existing <i>in vivo</i> data) as the basis for <i>in vitro</i> to <i>in vivo</i> extrapolation. In addition, this group noted a need to develop procedures to align NAMs-based points of departure (PODs) and uncertainty factor selection with current human health risk assessment methods, together with consideration of elements unique to <i>in vitro</i> data. Current approaches are described and priorities for future characterization of <i>in vitro</i> NAMs to assess respiratory irritation are noted.</p>","PeriodicalId":73111,"journal":{"name":"Frontiers in toxicology","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493779/pdf/","citationCount":"0","resultStr":"{\"title\":\"New approach methodologies (NAMs) for the <i>in vitro</i> assessment of cleaning products for respiratory irritation: workshop report.\",\"authors\":\"Lynne T Haber, Mark A Bradley, Amanda N Buerger, Holger Behrsing, Sabina Burla, Phillip W Clapp, Scott Dotson, Casey Fisher, Keith R Genco, Francis H Kruszewski, Shaun D McCullough, Kathryn E Page, Vivek Patel, Nathan Pechacek, Clive Roper, Monita Sharma, Annie M Jarabek\",\"doi\":\"10.3389/ftox.2024.1431790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of <i>in vitro</i> new approach methodologies (NAMs) to assess respiratory irritation depends on several factors, including the specifics of exposure methods and cell/tissue-based test systems. This topic was examined in the context of human health risk assessment for cleaning products at a 1-day public workshop held on 2 March 2023, organized by the American Cleaning Institute<sup>®</sup> (ACI). The goals of this workshop were to (1) review <i>in vitro</i> NAMs for evaluation of respiratory irritation, (2) examine different perspectives on current challenges and suggested solutions, and (3) publish a manuscript of the proceedings. Targeted sessions focused on exposure methods, <i>in vitro</i> cell/tissue test systems, and application to human health risk assessment. The importance of characterization of assays and development of reporting standards was noted throughout the workshop. The exposure methods session emphasized that the appropriate exposure system design depends on the purpose of the assessment. This is particularly important given the many dosimetry and technical considerations affecting relevance and translation of results to human exposure scenarios. Discussion in the <i>in vitro</i> cell/tissue test systems session focused on the wide variety of cell systems with varying suitability for evaluating key mechanistic steps, such as molecular initiating events (MIEs) and key events (KEs) likely present in any putative respiratory irritation adverse outcome pathway (AOP). This suggests the opportunity to further develop guidance around <i>in vitro</i> cell/tissue test system endpoint selection, assay design, characterization and validation, and analytics that provide information about a given assay's utility. The session on applications for human health protection emphasized using mechanistic understanding to inform the choice of test systems and integration of NAMs-derived data with other data sources (e.g., physicochemical properties, exposure information, and existing <i>in vivo</i> data) as the basis for <i>in vitro</i> to <i>in vivo</i> extrapolation. In addition, this group noted a need to develop procedures to align NAMs-based points of departure (PODs) and uncertainty factor selection with current human health risk assessment methods, together with consideration of elements unique to <i>in vitro</i> data. Current approaches are described and priorities for future characterization of <i>in vitro</i> NAMs to assess respiratory irritation are noted.</p>\",\"PeriodicalId\":73111,\"journal\":{\"name\":\"Frontiers in toxicology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11493779/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in toxicology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/ftox.2024.1431790\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in toxicology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/ftox.2024.1431790","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

使用体外新方法(NAMs)评估呼吸道刺激性取决于多个因素,包括暴露方法和基于细胞/组织的测试系统的具体情况。2023 年 3 月 2 日,美国清洁学会 (American Cleaning Institute®, ACI) 组织了为期一天的公开研讨会,在清洁产品人体健康风险评估的背景下研究了这一主题。本次研讨会的目标是:(1)审查用于评估呼吸道刺激性的体外 NAM,(2)研究有关当前挑战和建议解决方案的不同观点,以及(3)出版会议记录手稿。有针对性的会议侧重于暴露方法、体外细胞/组织测试系统以及在人类健康风险评估中的应用。整个研讨会都强调了检测方法特征描述和报告标准制定的重要性。暴露方法会议强调,适当的暴露系统设计取决于评估的目的。这一点尤为重要,因为有许多剂量测定和技术方面的考虑因素会影响结果与人类暴露情况的相关性和转化。体外细胞/组织测试系统会议的讨论重点是各种细胞系统,它们在评估关键机理步骤(如任何推定的呼吸刺激不良后果途径(AOP)中可能存在的分子起始事件(MIEs)和关键事件(KEs))方面的适用性各不相同。这表明有机会围绕体外细胞/组织测试系统终点选择、化验设计、特征描述和验证以及提供特定化验效用信息的分析等方面进一步制定指南。关于人类健康保护应用的会议强调,应利用对机理的理解来指导测试系统的选择,并将从非杀伤人员地雷中获得的数据与其他数据源(如理化特性、暴露信息和现有体内数据)进行整合,作为体外到体内外推的基础。此外,该小组还指出有必要制定程序,使基于 NAMs 的出发点 (POD) 和不确定性因子选择与当前的人类健康风险评估方法保持一致,同时考虑体外数据的独特因素。该小组介绍了当前的方法,并指出了今后用于评估呼吸道刺激性的体外 NAM 特征的优先事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New approach methodologies (NAMs) for the in vitro assessment of cleaning products for respiratory irritation: workshop report.

The use of in vitro new approach methodologies (NAMs) to assess respiratory irritation depends on several factors, including the specifics of exposure methods and cell/tissue-based test systems. This topic was examined in the context of human health risk assessment for cleaning products at a 1-day public workshop held on 2 March 2023, organized by the American Cleaning Institute® (ACI). The goals of this workshop were to (1) review in vitro NAMs for evaluation of respiratory irritation, (2) examine different perspectives on current challenges and suggested solutions, and (3) publish a manuscript of the proceedings. Targeted sessions focused on exposure methods, in vitro cell/tissue test systems, and application to human health risk assessment. The importance of characterization of assays and development of reporting standards was noted throughout the workshop. The exposure methods session emphasized that the appropriate exposure system design depends on the purpose of the assessment. This is particularly important given the many dosimetry and technical considerations affecting relevance and translation of results to human exposure scenarios. Discussion in the in vitro cell/tissue test systems session focused on the wide variety of cell systems with varying suitability for evaluating key mechanistic steps, such as molecular initiating events (MIEs) and key events (KEs) likely present in any putative respiratory irritation adverse outcome pathway (AOP). This suggests the opportunity to further develop guidance around in vitro cell/tissue test system endpoint selection, assay design, characterization and validation, and analytics that provide information about a given assay's utility. The session on applications for human health protection emphasized using mechanistic understanding to inform the choice of test systems and integration of NAMs-derived data with other data sources (e.g., physicochemical properties, exposure information, and existing in vivo data) as the basis for in vitro to in vivo extrapolation. In addition, this group noted a need to develop procedures to align NAMs-based points of departure (PODs) and uncertainty factor selection with current human health risk assessment methods, together with consideration of elements unique to in vitro data. Current approaches are described and priorities for future characterization of in vitro NAMs to assess respiratory irritation are noted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
A new approach methodology to identify tumorigenic chemicals using short-term exposures and transcript profiling. A systematic review and meta-analysis of the impact of triclosan exposure on human semen quality. Reproductive toxicology: keeping up with our changing world. Microplastics and nanoplastics in cardiovascular disease-a narrative review with worrying links. Ergot alkaloid control in biotechnological processes and pharmaceuticals (a mini review).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1