{"title":"噻唑烷-4-酮类似物:合成、硅内分子建模和体内抗惊厥潜力评估。","authors":"Payal Mittal, Deepak Ghanghas, Diksha Sharma, Kamal Shah, Girish Chandra Arya, Aarti Chaudhary, Hitesh Kumar Dewangan","doi":"10.2174/0118715249322920241004113343","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Epilepsy is a critically deep-rooted CNS disorder affecting above 50 million people all over the world. Thus, a safe and effective treatment that proves its worth in this ailment is urgently needed. Thiazolidine-4-ones possess the molecules to be used as anticonvulsants. The thiazolidinedione is a cyclic analogue of thiosemicarbazides and thioureas as well as a (bio)isostere of hydantoin (imidazolidine-2,4-dione), which are recognized as novel anticonvulsant designs.</p><p><strong>Aim: </strong>This study aimed to develop and evaluate a novel thiazolidine-4-one derivative by three-component condensation in one pot reaction method.</p><p><strong>Methods: </strong>A novel thiazolidine-4-one derivative was formulated by three-component condensation. The selected OH (Alcohol) derivatives were found to be more potent; hence, a molecular docking study against a selected target LGI1 LRR domain was performed. Various analytical tests like FTIR and H1 NMR were accomplished. The FTIR was used to validate the existence of multiple functional moieties like C-S, O-H, C=O, C-N, N=O, C-NH, C-O in the wave region from 3075 cm-1 - 1236 cm-1 and H1 NMR was employed to ascertain if the synthesized analogues had the complete set of protons. Then, the anti-seizure activity of the selected compound was examined using PTZ models in mice at three successive doses, i.e., 25, 50, and 100mg/kg, and compared with standard ethosuximide.</p><p><strong>Results: </strong>The docking simulations were initiated using PyMOL after the binding site was determined and the receptor and ligand were suitably prepared. It showed higher binding frequency in comparison to the standard marketed drug Ethosuximide. FTIR and H1 NMR spectroscopy were used to characterize the chemical components. Numerous functional groups, including O-H (alcohol), C=O (ketones), N=O, C-NH, C-N, C-S, and C-O bending stretching, were visible in the synthesized molecule accordingly. The synthesized compound was effective in inhibiting the convulsions at the concentration of 100 mg/kg.</p><p><strong>Conclusion: </strong>The novel thiazolidine-4-one derivative showed promising activity and could be considered for further investigation and dosage form preparation.</p>","PeriodicalId":93930,"journal":{"name":"Central nervous system agents in medicinal chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thiazolidine-4-one Analogues: Synthesis, In-Silico Molecular Modeling, and In-vivo Estimation for Anticonvulsant Potential.\",\"authors\":\"Payal Mittal, Deepak Ghanghas, Diksha Sharma, Kamal Shah, Girish Chandra Arya, Aarti Chaudhary, Hitesh Kumar Dewangan\",\"doi\":\"10.2174/0118715249322920241004113343\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Epilepsy is a critically deep-rooted CNS disorder affecting above 50 million people all over the world. Thus, a safe and effective treatment that proves its worth in this ailment is urgently needed. Thiazolidine-4-ones possess the molecules to be used as anticonvulsants. The thiazolidinedione is a cyclic analogue of thiosemicarbazides and thioureas as well as a (bio)isostere of hydantoin (imidazolidine-2,4-dione), which are recognized as novel anticonvulsant designs.</p><p><strong>Aim: </strong>This study aimed to develop and evaluate a novel thiazolidine-4-one derivative by three-component condensation in one pot reaction method.</p><p><strong>Methods: </strong>A novel thiazolidine-4-one derivative was formulated by three-component condensation. The selected OH (Alcohol) derivatives were found to be more potent; hence, a molecular docking study against a selected target LGI1 LRR domain was performed. Various analytical tests like FTIR and H1 NMR were accomplished. The FTIR was used to validate the existence of multiple functional moieties like C-S, O-H, C=O, C-N, N=O, C-NH, C-O in the wave region from 3075 cm-1 - 1236 cm-1 and H1 NMR was employed to ascertain if the synthesized analogues had the complete set of protons. Then, the anti-seizure activity of the selected compound was examined using PTZ models in mice at three successive doses, i.e., 25, 50, and 100mg/kg, and compared with standard ethosuximide.</p><p><strong>Results: </strong>The docking simulations were initiated using PyMOL after the binding site was determined and the receptor and ligand were suitably prepared. It showed higher binding frequency in comparison to the standard marketed drug Ethosuximide. FTIR and H1 NMR spectroscopy were used to characterize the chemical components. Numerous functional groups, including O-H (alcohol), C=O (ketones), N=O, C-NH, C-N, C-S, and C-O bending stretching, were visible in the synthesized molecule accordingly. The synthesized compound was effective in inhibiting the convulsions at the concentration of 100 mg/kg.</p><p><strong>Conclusion: </strong>The novel thiazolidine-4-one derivative showed promising activity and could be considered for further investigation and dosage form preparation.</p>\",\"PeriodicalId\":93930,\"journal\":{\"name\":\"Central nervous system agents in medicinal chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central nervous system agents in medicinal chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715249322920241004113343\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central nervous system agents in medicinal chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118715249322920241004113343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thiazolidine-4-one Analogues: Synthesis, In-Silico Molecular Modeling, and In-vivo Estimation for Anticonvulsant Potential.
Background: Epilepsy is a critically deep-rooted CNS disorder affecting above 50 million people all over the world. Thus, a safe and effective treatment that proves its worth in this ailment is urgently needed. Thiazolidine-4-ones possess the molecules to be used as anticonvulsants. The thiazolidinedione is a cyclic analogue of thiosemicarbazides and thioureas as well as a (bio)isostere of hydantoin (imidazolidine-2,4-dione), which are recognized as novel anticonvulsant designs.
Aim: This study aimed to develop and evaluate a novel thiazolidine-4-one derivative by three-component condensation in one pot reaction method.
Methods: A novel thiazolidine-4-one derivative was formulated by three-component condensation. The selected OH (Alcohol) derivatives were found to be more potent; hence, a molecular docking study against a selected target LGI1 LRR domain was performed. Various analytical tests like FTIR and H1 NMR were accomplished. The FTIR was used to validate the existence of multiple functional moieties like C-S, O-H, C=O, C-N, N=O, C-NH, C-O in the wave region from 3075 cm-1 - 1236 cm-1 and H1 NMR was employed to ascertain if the synthesized analogues had the complete set of protons. Then, the anti-seizure activity of the selected compound was examined using PTZ models in mice at three successive doses, i.e., 25, 50, and 100mg/kg, and compared with standard ethosuximide.
Results: The docking simulations were initiated using PyMOL after the binding site was determined and the receptor and ligand were suitably prepared. It showed higher binding frequency in comparison to the standard marketed drug Ethosuximide. FTIR and H1 NMR spectroscopy were used to characterize the chemical components. Numerous functional groups, including O-H (alcohol), C=O (ketones), N=O, C-NH, C-N, C-S, and C-O bending stretching, were visible in the synthesized molecule accordingly. The synthesized compound was effective in inhibiting the convulsions at the concentration of 100 mg/kg.
Conclusion: The novel thiazolidine-4-one derivative showed promising activity and could be considered for further investigation and dosage form preparation.