Rakesh Das , Tanner L. Cabaniss , Sergio A. Pineda-Castillo , Bradley N. Bohnstedt , Yingtao Liu , Chung-Hao Lee
{"title":"为颅内动脉瘤的血管内治疗设计热可编程三维形状记忆聚合物设备。","authors":"Rakesh Das , Tanner L. Cabaniss , Sergio A. Pineda-Castillo , Bradley N. Bohnstedt , Yingtao Liu , Chung-Hao Lee","doi":"10.1016/j.jmbbm.2024.106784","DOIUrl":null,"url":null,"abstract":"<div><div>Despite recent technological advancements in endovascular embolization devices for treating intracranial aneurysms (ICAs), incomplete occlusion and aneurysm recanalization remain critical challenges. Shape memory polymer (SMP)-based devices, which can be manufactured and tailored to patient-specific aneurysm geometries, possess the potential to overcome the suboptimal treatment outcome of the gold standard: <em>endovascular coiling</em>. In this work, we propose a highly porous patient-specific SMP embolic device fabricated via 3D printing to optimize aneurysm occlusion, and thus, improve the long-term efficacy of endovascular treatment. To facilitate device deployment at the aneurysm via Joule-heating, we introduce a stable, homogeneous coating of poly-pyrrole (PPy) to enhance the electrical conductivity in the SMP material. Using an in-house pulse width modulation circuit, we induced Joule-heating and characterized the shape recovery of the PPy-coated SMP embolic devices. We found that the employed PPy coating enables enhanced electrical and thermal conductivity while only slightly altering the glass transition temperature of the SMP material. Additionally, from a series of parametric studies, we identified the combination of catalyst concentration and pyrrole polymerization time that yielded the shape recovery properties ideal for ICA endovascular therapy. Collectively, these findings highlight a promising material coating for a future coil-free, personalized shape memory polymer (SMP) embolic device, designed to achieve long-lasting, complete occlusion of aneurysms.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"160 ","pages":"Article 106784"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of thermally programmable 3D shape memory polymer-based devices tailored for endovascular treatment of intracranial aneurysms\",\"authors\":\"Rakesh Das , Tanner L. Cabaniss , Sergio A. Pineda-Castillo , Bradley N. Bohnstedt , Yingtao Liu , Chung-Hao Lee\",\"doi\":\"10.1016/j.jmbbm.2024.106784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite recent technological advancements in endovascular embolization devices for treating intracranial aneurysms (ICAs), incomplete occlusion and aneurysm recanalization remain critical challenges. Shape memory polymer (SMP)-based devices, which can be manufactured and tailored to patient-specific aneurysm geometries, possess the potential to overcome the suboptimal treatment outcome of the gold standard: <em>endovascular coiling</em>. In this work, we propose a highly porous patient-specific SMP embolic device fabricated via 3D printing to optimize aneurysm occlusion, and thus, improve the long-term efficacy of endovascular treatment. To facilitate device deployment at the aneurysm via Joule-heating, we introduce a stable, homogeneous coating of poly-pyrrole (PPy) to enhance the electrical conductivity in the SMP material. Using an in-house pulse width modulation circuit, we induced Joule-heating and characterized the shape recovery of the PPy-coated SMP embolic devices. We found that the employed PPy coating enables enhanced electrical and thermal conductivity while only slightly altering the glass transition temperature of the SMP material. Additionally, from a series of parametric studies, we identified the combination of catalyst concentration and pyrrole polymerization time that yielded the shape recovery properties ideal for ICA endovascular therapy. Collectively, these findings highlight a promising material coating for a future coil-free, personalized shape memory polymer (SMP) embolic device, designed to achieve long-lasting, complete occlusion of aneurysms.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"160 \",\"pages\":\"Article 106784\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616124004168\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616124004168","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Design of thermally programmable 3D shape memory polymer-based devices tailored for endovascular treatment of intracranial aneurysms
Despite recent technological advancements in endovascular embolization devices for treating intracranial aneurysms (ICAs), incomplete occlusion and aneurysm recanalization remain critical challenges. Shape memory polymer (SMP)-based devices, which can be manufactured and tailored to patient-specific aneurysm geometries, possess the potential to overcome the suboptimal treatment outcome of the gold standard: endovascular coiling. In this work, we propose a highly porous patient-specific SMP embolic device fabricated via 3D printing to optimize aneurysm occlusion, and thus, improve the long-term efficacy of endovascular treatment. To facilitate device deployment at the aneurysm via Joule-heating, we introduce a stable, homogeneous coating of poly-pyrrole (PPy) to enhance the electrical conductivity in the SMP material. Using an in-house pulse width modulation circuit, we induced Joule-heating and characterized the shape recovery of the PPy-coated SMP embolic devices. We found that the employed PPy coating enables enhanced electrical and thermal conductivity while only slightly altering the glass transition temperature of the SMP material. Additionally, from a series of parametric studies, we identified the combination of catalyst concentration and pyrrole polymerization time that yielded the shape recovery properties ideal for ICA endovascular therapy. Collectively, these findings highlight a promising material coating for a future coil-free, personalized shape memory polymer (SMP) embolic device, designed to achieve long-lasting, complete occlusion of aneurysms.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.