卵生云纹鲨(Scyliorhinus torazame)产卵期间卵囊内微生物丰度和群落多样性较低。

IF 3.6 4区 生物学 Q2 ENVIRONMENTAL SCIENCES Environmental Microbiology Reports Pub Date : 2024-10-22 DOI:10.1111/1758-2229.70025
Wataru Takagi, Ayami Masuda, Koya Shimoyama, Kotaro Tokunaga, Susumu Hyodo, Yuki Sato-Takabe
{"title":"卵生云纹鲨(Scyliorhinus torazame)产卵期间卵囊内微生物丰度和群落多样性较低。","authors":"Wataru Takagi,&nbsp;Ayami Masuda,&nbsp;Koya Shimoyama,&nbsp;Kotaro Tokunaga,&nbsp;Susumu Hyodo,&nbsp;Yuki Sato-Takabe","doi":"10.1111/1758-2229.70025","DOIUrl":null,"url":null,"abstract":"<p>Vertebrate embryos are protected from bacterial infection by various maternally derived factors, yet little is known about the defence mechanisms in elasmobranchs. This study aimed to characterize the intracapsular environment of freshly laid eggs of the oviparous catshark (<i>Scyliorhinus torazame</i>) by investigating the microbial abundance and microbiota to understand its potential contribution to embryonic defence. The egg capsule of oviparous elasmobranchs is tightly sealed until pre-hatching, after which seawater flows into the capsule, exposing the embryos to the surrounding seawater. We found that early embryos were highly vulnerable to environmental pathogens, suggesting that the embryos are somehow protected from infection before pre-hatching. Indeed, the intracapsular environment of freshly laid eggs exhibited significantly low bacterial density, maintained until pre-hatching. Furthermore, the microbiome inside eggs just after oviposition differed markedly from those of rearing seawater and adult oviducal gland epithelia; these eggs were predominantly populated by an unidentified genus of Sphingomonadaceae. Overall, this study provides compelling evidence that early embryos of oviparous cloudy catshark are incubated in a clean intracapsular environment that potentially plays a significant role in embryonic development in oviparous elasmobranchs.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 5","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496042/pdf/","citationCount":"0","resultStr":"{\"title\":\"Low microbial abundance and community diversity in the egg capsule of the oviparous cloudy catshark (Scyliorhinus torazame) during oviposition\",\"authors\":\"Wataru Takagi,&nbsp;Ayami Masuda,&nbsp;Koya Shimoyama,&nbsp;Kotaro Tokunaga,&nbsp;Susumu Hyodo,&nbsp;Yuki Sato-Takabe\",\"doi\":\"10.1111/1758-2229.70025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vertebrate embryos are protected from bacterial infection by various maternally derived factors, yet little is known about the defence mechanisms in elasmobranchs. This study aimed to characterize the intracapsular environment of freshly laid eggs of the oviparous catshark (<i>Scyliorhinus torazame</i>) by investigating the microbial abundance and microbiota to understand its potential contribution to embryonic defence. The egg capsule of oviparous elasmobranchs is tightly sealed until pre-hatching, after which seawater flows into the capsule, exposing the embryos to the surrounding seawater. We found that early embryos were highly vulnerable to environmental pathogens, suggesting that the embryos are somehow protected from infection before pre-hatching. Indeed, the intracapsular environment of freshly laid eggs exhibited significantly low bacterial density, maintained until pre-hatching. Furthermore, the microbiome inside eggs just after oviposition differed markedly from those of rearing seawater and adult oviducal gland epithelia; these eggs were predominantly populated by an unidentified genus of Sphingomonadaceae. Overall, this study provides compelling evidence that early embryos of oviparous cloudy catshark are incubated in a clean intracapsular environment that potentially plays a significant role in embryonic development in oviparous elasmobranchs.</p>\",\"PeriodicalId\":163,\"journal\":{\"name\":\"Environmental Microbiology Reports\",\"volume\":\"16 5\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11496042/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiology Reports\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70025\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脊椎动物的胚胎受到各种母源因子的保护,免受细菌感染,但人们对弹尾目动物的防御机制知之甚少。本研究旨在通过调查微生物丰度和微生物群来描述卵胎生猫鲨(Scyliorhinus torazame)刚产下的卵的囊内环境特征,从而了解其对胚胎防御的潜在贡献。卵胎生弹涂鱼的卵囊在孵化前是紧密密封的,孵化后海水会流入卵囊,使胚胎暴露在周围的海水中。我们发现,早期胚胎极易受到环境病原体的感染,这表明胚胎在孵化前受到某种保护,免受感染。事实上,刚产下的卵的囊内环境细菌密度很低,一直维持到孵化前。此外,刚产卵后卵内的微生物群与饲养海水和成体卵黄腺上皮细胞内的微生物群明显不同;这些卵内主要是一种未确定属种的鞘氨醇单胞菌。总之,这项研究提供了令人信服的证据,证明产卵性云纹猫鼬的早期胚胎是在清洁的囊内环境中孵化的,这种环境可能对产卵性弹尾目动物的胚胎发育起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low microbial abundance and community diversity in the egg capsule of the oviparous cloudy catshark (Scyliorhinus torazame) during oviposition

Vertebrate embryos are protected from bacterial infection by various maternally derived factors, yet little is known about the defence mechanisms in elasmobranchs. This study aimed to characterize the intracapsular environment of freshly laid eggs of the oviparous catshark (Scyliorhinus torazame) by investigating the microbial abundance and microbiota to understand its potential contribution to embryonic defence. The egg capsule of oviparous elasmobranchs is tightly sealed until pre-hatching, after which seawater flows into the capsule, exposing the embryos to the surrounding seawater. We found that early embryos were highly vulnerable to environmental pathogens, suggesting that the embryos are somehow protected from infection before pre-hatching. Indeed, the intracapsular environment of freshly laid eggs exhibited significantly low bacterial density, maintained until pre-hatching. Furthermore, the microbiome inside eggs just after oviposition differed markedly from those of rearing seawater and adult oviducal gland epithelia; these eggs were predominantly populated by an unidentified genus of Sphingomonadaceae. Overall, this study provides compelling evidence that early embryos of oviparous cloudy catshark are incubated in a clean intracapsular environment that potentially plays a significant role in embryonic development in oviparous elasmobranchs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Microbiology Reports
Environmental Microbiology Reports ENVIRONMENTAL SCIENCES-MICROBIOLOGY
CiteScore
6.00
自引率
3.00%
发文量
91
审稿时长
3.0 months
期刊介绍: The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side. Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following: the structure, activities and communal behaviour of microbial communities microbial community genetics and evolutionary processes microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors microbes in the tree of life, microbial diversification and evolution population biology and clonal structure microbial metabolic and structural diversity microbial physiology, growth and survival microbes and surfaces, adhesion and biofouling responses to environmental signals and stress factors modelling and theory development pollution microbiology extremophiles and life in extreme and unusual little-explored habitats element cycles and biogeochemical processes, primary and secondary production microbes in a changing world, microbially-influenced global changes evolution and diversity of archaeal and bacterial viruses new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.
期刊最新文献
Comparing the effectiveness of different DNA extraction methods in MX-80 bentonite Comparing the effectiveness of different DNA extraction methods in MX-80 bentonite Increased antibiotic resistance gene abundance linked to intensive bacterial competition in the phyllosphere across an elevational gradient Understanding the tolerance of halophilic archaea to stress landscapes At what cost? The impact of bacteriophage resistance on the growth kinetics and protein synthesis of Escherichia coli
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1