Shaojie Han, Dayoung Oh, Nadège Balmelle, Ann Brigitte Cay, Xiaolei Ren, Brecht Droesbeke, Marylène Tignon, Hans Nauwynck
{"title":"利用已建立的静脉穿刺模型分析非洲猪瘟病毒(ASFV)基因型 I E70 和 ASFV 基因型 II Belgium 2018/1 在静脉周围巨噬细胞中的复制特征。","authors":"Shaojie Han, Dayoung Oh, Nadège Balmelle, Ann Brigitte Cay, Xiaolei Ren, Brecht Droesbeke, Marylène Tignon, Hans Nauwynck","doi":"10.3390/v16101602","DOIUrl":null,"url":null,"abstract":"<p><p>African Swine Fever Virus (ASFV), resulting in strain-dependent vascular pathology, leading to hemorrhagic fever, is an important pathogen in swine. The pathogenesis of ASFV is determined by the array and spatial distribution of susceptible cells within the host. In this study, the replication characteristics of ASFV genotype I E70 (G1-E70) and ASFV genotype II Belgium 2018/1 (G2-B18) in the environment of small veins were investigated in an established vein explant model. Immunofluorescence staining analysis revealed that perivenous macrophages (CD163<sup>+</sup> cells) were widely distributed in the explant, with most of them (approximately 2-10 cells/0.03 mm<sup>2</sup>) being present close to the vein (within a radius of 0-348 µm). Upon inoculation with G1-E70 and G2-B18, we observed an increase in the quantity of cells testing positive for viral antigens over time. G1-E70 replicated more efficiently than G2-B18 in the vein explants (7.6-fold for the ear explant at 72 hpi). The majority of ASFV<sup>+</sup> cells were CD163<sup>+</sup>, indicating that macrophages are the primary target cells. Additional identification of cells infected with ASFV revealed the presence of vimentin<sup>+</sup>, CD14<sup>+</sup>, and VWF<sup>+</sup> cells, demonstrating the cellular diversity and complexity associated with ASFV infection. By the use of this new vein explant model, the susceptibility of vascular and perivascular cells to an ASFV infection was identified. With this model, it will be possible now to conduct more functional analyses to get better insights into the pathogenesis of ASFV-induced hemorrhages.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"16 10","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512260/pdf/","citationCount":"0","resultStr":"{\"title\":\"Replication Characteristics of African Swine Fever Virus (ASFV) Genotype I E70 and ASFV Genotype II Belgium 2018/1 in Perivenous Macrophages Using Established Vein Explant Model.\",\"authors\":\"Shaojie Han, Dayoung Oh, Nadège Balmelle, Ann Brigitte Cay, Xiaolei Ren, Brecht Droesbeke, Marylène Tignon, Hans Nauwynck\",\"doi\":\"10.3390/v16101602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>African Swine Fever Virus (ASFV), resulting in strain-dependent vascular pathology, leading to hemorrhagic fever, is an important pathogen in swine. The pathogenesis of ASFV is determined by the array and spatial distribution of susceptible cells within the host. In this study, the replication characteristics of ASFV genotype I E70 (G1-E70) and ASFV genotype II Belgium 2018/1 (G2-B18) in the environment of small veins were investigated in an established vein explant model. Immunofluorescence staining analysis revealed that perivenous macrophages (CD163<sup>+</sup> cells) were widely distributed in the explant, with most of them (approximately 2-10 cells/0.03 mm<sup>2</sup>) being present close to the vein (within a radius of 0-348 µm). Upon inoculation with G1-E70 and G2-B18, we observed an increase in the quantity of cells testing positive for viral antigens over time. G1-E70 replicated more efficiently than G2-B18 in the vein explants (7.6-fold for the ear explant at 72 hpi). The majority of ASFV<sup>+</sup> cells were CD163<sup>+</sup>, indicating that macrophages are the primary target cells. Additional identification of cells infected with ASFV revealed the presence of vimentin<sup>+</sup>, CD14<sup>+</sup>, and VWF<sup>+</sup> cells, demonstrating the cellular diversity and complexity associated with ASFV infection. By the use of this new vein explant model, the susceptibility of vascular and perivascular cells to an ASFV infection was identified. With this model, it will be possible now to conduct more functional analyses to get better insights into the pathogenesis of ASFV-induced hemorrhages.</p>\",\"PeriodicalId\":49328,\"journal\":{\"name\":\"Viruses-Basel\",\"volume\":\"16 10\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512260/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Viruses-Basel\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3390/v16101602\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v16101602","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
Replication Characteristics of African Swine Fever Virus (ASFV) Genotype I E70 and ASFV Genotype II Belgium 2018/1 in Perivenous Macrophages Using Established Vein Explant Model.
African Swine Fever Virus (ASFV), resulting in strain-dependent vascular pathology, leading to hemorrhagic fever, is an important pathogen in swine. The pathogenesis of ASFV is determined by the array and spatial distribution of susceptible cells within the host. In this study, the replication characteristics of ASFV genotype I E70 (G1-E70) and ASFV genotype II Belgium 2018/1 (G2-B18) in the environment of small veins were investigated in an established vein explant model. Immunofluorescence staining analysis revealed that perivenous macrophages (CD163+ cells) were widely distributed in the explant, with most of them (approximately 2-10 cells/0.03 mm2) being present close to the vein (within a radius of 0-348 µm). Upon inoculation with G1-E70 and G2-B18, we observed an increase in the quantity of cells testing positive for viral antigens over time. G1-E70 replicated more efficiently than G2-B18 in the vein explants (7.6-fold for the ear explant at 72 hpi). The majority of ASFV+ cells were CD163+, indicating that macrophages are the primary target cells. Additional identification of cells infected with ASFV revealed the presence of vimentin+, CD14+, and VWF+ cells, demonstrating the cellular diversity and complexity associated with ASFV infection. By the use of this new vein explant model, the susceptibility of vascular and perivascular cells to an ASFV infection was identified. With this model, it will be possible now to conduct more functional analyses to get better insights into the pathogenesis of ASFV-induced hemorrhages.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.