{"title":"下一代网络中的高效在线分片接入控制方案","authors":"Solomon Orduen Yese;Sara Berri;Arsenia Chorti","doi":"10.1109/LNET.2024.3416555","DOIUrl":null,"url":null,"abstract":"This letter proposes a slice admission control scheme to maximize profit and resource utilization. It considers an online scenario where the infrastructure provider (InP) does not have full knowledge of future requests and requests can renege after their waiting time is exceeded. Moreover, it employs a dynamic priority and a capacity sharing mechanism to buy back idle resources from already accepted slices. The performance evaluation demonstrates that the proposed algorithm yields about 26%, 7%, and 7.3% higher profit, acceptance rate and resource utilization gains over the state of the art schemes, respectively.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"6 3","pages":"163-167"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Online Slice Admission Control Scheme in Next Generation Networks\",\"authors\":\"Solomon Orduen Yese;Sara Berri;Arsenia Chorti\",\"doi\":\"10.1109/LNET.2024.3416555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This letter proposes a slice admission control scheme to maximize profit and resource utilization. It considers an online scenario where the infrastructure provider (InP) does not have full knowledge of future requests and requests can renege after their waiting time is exceeded. Moreover, it employs a dynamic priority and a capacity sharing mechanism to buy back idle resources from already accepted slices. The performance evaluation demonstrates that the proposed algorithm yields about 26%, 7%, and 7.3% higher profit, acceptance rate and resource utilization gains over the state of the art schemes, respectively.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"6 3\",\"pages\":\"163-167\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10563989/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10563989/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Online Slice Admission Control Scheme in Next Generation Networks
This letter proposes a slice admission control scheme to maximize profit and resource utilization. It considers an online scenario where the infrastructure provider (InP) does not have full knowledge of future requests and requests can renege after their waiting time is exceeded. Moreover, it employs a dynamic priority and a capacity sharing mechanism to buy back idle resources from already accepted slices. The performance evaluation demonstrates that the proposed algorithm yields about 26%, 7%, and 7.3% higher profit, acceptance rate and resource utilization gains over the state of the art schemes, respectively.