基于信道老化感知 LSTM 的卫星通信信道预测

Omid Abbasi;Georges Kaddoum
{"title":"基于信道老化感知 LSTM 的卫星通信信道预测","authors":"Omid Abbasi;Georges Kaddoum","doi":"10.1109/LNET.2024.3444495","DOIUrl":null,"url":null,"abstract":"Satellite communication systems encounter channel aging issues due to the substantial distance that separates users and satellites. In such systems, the estimated channel state at a given time slot reflects the channel state from several time slots in the past. This letter proposes a long short-term memory (LSTM)-based architecture for channel prediction to mitigate the channel aging problem. The proposed scheme predicts the next time slot’s channel based on a block of estimated channel state information (CSI) from previous time slots. We consider the effect of channel aging in the training phase so that channel prediction in the testing phase is performed based on available data. We demonstrated through simulation experiments on new radio non-terrestrial network tapped delay line (NR NTN TDL) channel models, that our proposed scheme can effectively mitigate channel aging, and that it performs better than outdated channels. The proposed scheme improves the reliability and efficiency of satellite communication systems with long propagation delays.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"6 3","pages":"183-187"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel Aging-Aware LSTM-Based Channel Prediction for Satellite Communications\",\"authors\":\"Omid Abbasi;Georges Kaddoum\",\"doi\":\"10.1109/LNET.2024.3444495\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Satellite communication systems encounter channel aging issues due to the substantial distance that separates users and satellites. In such systems, the estimated channel state at a given time slot reflects the channel state from several time slots in the past. This letter proposes a long short-term memory (LSTM)-based architecture for channel prediction to mitigate the channel aging problem. The proposed scheme predicts the next time slot’s channel based on a block of estimated channel state information (CSI) from previous time slots. We consider the effect of channel aging in the training phase so that channel prediction in the testing phase is performed based on available data. We demonstrated through simulation experiments on new radio non-terrestrial network tapped delay line (NR NTN TDL) channel models, that our proposed scheme can effectively mitigate channel aging, and that it performs better than outdated channels. The proposed scheme improves the reliability and efficiency of satellite communication systems with long propagation delays.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"6 3\",\"pages\":\"183-187\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10637286/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10637286/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于用户和卫星之间相距甚远,卫星通信系统会遇到信道老化问题。在此类系统中,特定时隙的估计信道状态反映了过去几个时隙的信道状态。本文提出了一种基于长短期记忆(LSTM)的信道预测架构,以缓解信道老化问题。所提方案根据前一时隙的估计信道状态信息(CSI)块预测下一时隙的信道。我们考虑了训练阶段信道老化的影响,因此测试阶段的信道预测是基于可用数据进行的。我们通过在新型无线电非地面网络分接延迟线(NR NTN TDL)信道模型上进行仿真实验证明,我们提出的方案能有效缓解信道老化,其性能优于过时的信道。所提出的方案提高了具有长传播延迟的卫星通信系统的可靠性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Channel Aging-Aware LSTM-Based Channel Prediction for Satellite Communications
Satellite communication systems encounter channel aging issues due to the substantial distance that separates users and satellites. In such systems, the estimated channel state at a given time slot reflects the channel state from several time slots in the past. This letter proposes a long short-term memory (LSTM)-based architecture for channel prediction to mitigate the channel aging problem. The proposed scheme predicts the next time slot’s channel based on a block of estimated channel state information (CSI) from previous time slots. We consider the effect of channel aging in the training phase so that channel prediction in the testing phase is performed based on available data. We demonstrated through simulation experiments on new radio non-terrestrial network tapped delay line (NR NTN TDL) channel models, that our proposed scheme can effectively mitigate channel aging, and that it performs better than outdated channels. The proposed scheme improves the reliability and efficiency of satellite communication systems with long propagation delays.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Table of Contents IEEE Networking Letters Author Guidelines IEEE COMMUNICATIONS SOCIETY IEEE Communications Society Optimal Classifier for an ML-Assisted Resource Allocation in Wireless Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1