{"title":"使用深度生成图神经网络推荐移动网络配置","authors":"Shirwan Piroti;Ashima Chawla;Tahar Zanouda","doi":"10.1109/LNET.2024.3422482","DOIUrl":null,"url":null,"abstract":"There are vast number of configurable parameters in a Radio Access Telecom Network. A significant amount of these parameters is configured by Radio Node or cell based on their deployment setting. Traditional methods rely on domain knowledge for individual parameter configuration, often leading to sub-optimal results. To improve this, a framework using a Deep Generative Graph Neural Network (GNN) is proposed. It encodes the network into a graph, extracts subgraphs for each RAN node, and employs a Siamese GNN (S-GNN) to learn embeddings. The framework recommends configuration parameters for a multitude of parameters and detects misconfigurations, handling both network expansion and existing cell reconfiguration. Tested on real-world data, the model surpasses baselines, demonstrating accuracy, generalizability, and robustness against concept drift.","PeriodicalId":100628,"journal":{"name":"IEEE Networking Letters","volume":"6 3","pages":"179-182"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mobile Network Configuration Recommendation Using Deep Generative Graph Neural Network\",\"authors\":\"Shirwan Piroti;Ashima Chawla;Tahar Zanouda\",\"doi\":\"10.1109/LNET.2024.3422482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are vast number of configurable parameters in a Radio Access Telecom Network. A significant amount of these parameters is configured by Radio Node or cell based on their deployment setting. Traditional methods rely on domain knowledge for individual parameter configuration, often leading to sub-optimal results. To improve this, a framework using a Deep Generative Graph Neural Network (GNN) is proposed. It encodes the network into a graph, extracts subgraphs for each RAN node, and employs a Siamese GNN (S-GNN) to learn embeddings. The framework recommends configuration parameters for a multitude of parameters and detects misconfigurations, handling both network expansion and existing cell reconfiguration. Tested on real-world data, the model surpasses baselines, demonstrating accuracy, generalizability, and robustness against concept drift.\",\"PeriodicalId\":100628,\"journal\":{\"name\":\"IEEE Networking Letters\",\"volume\":\"6 3\",\"pages\":\"179-182\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Networking Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10584078/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Networking Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10584078/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
无线接入电信网络中有大量可配置参数。其中大量参数由无线节点或小区根据其部署设置进行配置。传统方法依赖领域知识进行单个参数配置,往往会导致次优结果。为了改善这种情况,我们提出了一个使用深度生成图神经网络(GNN)的框架。它将网络编码成图,为每个 RAN 节点提取子图,并采用连体 GNN(S-GNN)来学习嵌入。该框架为众多参数推荐配置参数,并检测错误配置,同时处理网络扩展和现有小区的重新配置。该模型在真实世界数据上进行了测试,其准确性、通用性和对概念漂移的稳健性均超过了基准。
Mobile Network Configuration Recommendation Using Deep Generative Graph Neural Network
There are vast number of configurable parameters in a Radio Access Telecom Network. A significant amount of these parameters is configured by Radio Node or cell based on their deployment setting. Traditional methods rely on domain knowledge for individual parameter configuration, often leading to sub-optimal results. To improve this, a framework using a Deep Generative Graph Neural Network (GNN) is proposed. It encodes the network into a graph, extracts subgraphs for each RAN node, and employs a Siamese GNN (S-GNN) to learn embeddings. The framework recommends configuration parameters for a multitude of parameters and detects misconfigurations, handling both network expansion and existing cell reconfiguration. Tested on real-world data, the model surpasses baselines, demonstrating accuracy, generalizability, and robustness against concept drift.