{"title":"带有辅助蜂窝芯和 GNP 加固面片的圆柱形夹芯板的热机械弯曲分析","authors":"Masoud Kiani, Mohammad Arefi, Hassan Afshari","doi":"10.1007/s43452-024-01043-z","DOIUrl":null,"url":null,"abstract":"<div><p>In the present research, the static bending analysis of a three-layer sandwich cylindrical panel with a re-entrant auxetic honeycomb core and polymeric face sheets reinforced with graphene nanoplatelets (GNPs) resting on an elastic foundation in a thermal environment is investigated. The mechanical properties of the nanocomposite GNP-reinforced face sheets are calculated using the Halpin–Tsai model along with the rule of mixture. The heat conduction equation is solved in the thickness direction to provide the exact profile of the temperature distribution. The panel is modeled based on the third-order shear deformation (TSDT), the elastic foundation is modeled according to the Pasternak foundation model, and the governing equations and boundary conditions are derived via the minimum potential energy principle. The differential quadrature method (DQM) is employed to solve the governing equations under various boundary conditions in longitudinal and circumferential directions. The convergence and accuracy of the modeling are confirmed and influences of different parameters on the deflection and stress distribution are studied including the inclined angle of the re-entrant cells, thermal environment, mass fraction and distribution patterns of the GNPs, the thickness of core-to-thickness of panel ratio, and the boundary conditions.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermo-mechanical bending analysis of a sandwich cylindrical panel with an auxetic honeycomb core and GNP-reinforced face sheets\",\"authors\":\"Masoud Kiani, Mohammad Arefi, Hassan Afshari\",\"doi\":\"10.1007/s43452-024-01043-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the present research, the static bending analysis of a three-layer sandwich cylindrical panel with a re-entrant auxetic honeycomb core and polymeric face sheets reinforced with graphene nanoplatelets (GNPs) resting on an elastic foundation in a thermal environment is investigated. The mechanical properties of the nanocomposite GNP-reinforced face sheets are calculated using the Halpin–Tsai model along with the rule of mixture. The heat conduction equation is solved in the thickness direction to provide the exact profile of the temperature distribution. The panel is modeled based on the third-order shear deformation (TSDT), the elastic foundation is modeled according to the Pasternak foundation model, and the governing equations and boundary conditions are derived via the minimum potential energy principle. The differential quadrature method (DQM) is employed to solve the governing equations under various boundary conditions in longitudinal and circumferential directions. The convergence and accuracy of the modeling are confirmed and influences of different parameters on the deflection and stress distribution are studied including the inclined angle of the re-entrant cells, thermal environment, mass fraction and distribution patterns of the GNPs, the thickness of core-to-thickness of panel ratio, and the boundary conditions.</p></div>\",\"PeriodicalId\":55474,\"journal\":{\"name\":\"Archives of Civil and Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Civil and Mechanical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43452-024-01043-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01043-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Thermo-mechanical bending analysis of a sandwich cylindrical panel with an auxetic honeycomb core and GNP-reinforced face sheets
In the present research, the static bending analysis of a three-layer sandwich cylindrical panel with a re-entrant auxetic honeycomb core and polymeric face sheets reinforced with graphene nanoplatelets (GNPs) resting on an elastic foundation in a thermal environment is investigated. The mechanical properties of the nanocomposite GNP-reinforced face sheets are calculated using the Halpin–Tsai model along with the rule of mixture. The heat conduction equation is solved in the thickness direction to provide the exact profile of the temperature distribution. The panel is modeled based on the third-order shear deformation (TSDT), the elastic foundation is modeled according to the Pasternak foundation model, and the governing equations and boundary conditions are derived via the minimum potential energy principle. The differential quadrature method (DQM) is employed to solve the governing equations under various boundary conditions in longitudinal and circumferential directions. The convergence and accuracy of the modeling are confirmed and influences of different parameters on the deflection and stress distribution are studied including the inclined angle of the re-entrant cells, thermal environment, mass fraction and distribution patterns of the GNPs, the thickness of core-to-thickness of panel ratio, and the boundary conditions.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.