{"title":"同构和异构复杂网络中链接预测的特征提取和学习技术概览","authors":"Puneet Kapoor, Sakshi Kaushal, Harish Kumar, Kushal Kanwar","doi":"10.1007/s10462-024-10998-7","DOIUrl":null,"url":null,"abstract":"<div><p>Complex networks are commonly observed in several real-world areas, such as social, biological, and technical systems, where they exhibit complicated patterns of connectedness and organised clusters. These networks have intricate topological characteristics that frequently elude conventional characterization. Link prediction in complex networks, like data flow in telecommunications networks, protein interactions in biological systems, and social media interactions on platforms like Facebook, etc., is an essential element of network analytics and presents fresh research challenges. Consequently, there is a growing emphasis in research on creating new link prediction methods for different network applications. This survey investigates several strategies related to link prediction, ranging from feature extraction based to feature learning based techniques, with a specific focus on their utilisation in dynamic and developing network topologies. Furthermore, this paper emphasises on a wide variety of feature learning techniques that go beyond basic feature extraction and matrix factorization. It includes advanced learning-based algorithms and neural network techniques specifically designed for link prediction. The study also presents evaluation results of different link prediction techniques on homogeneous and heterogeneous network datasets, and provides a thorough examination of existing methods and potential areas for further investigation.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"57 12","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-10998-7.pdf","citationCount":"0","resultStr":"{\"title\":\"A survey on feature extraction and learning techniques for link prediction in homogeneous and heterogeneous complex networks\",\"authors\":\"Puneet Kapoor, Sakshi Kaushal, Harish Kumar, Kushal Kanwar\",\"doi\":\"10.1007/s10462-024-10998-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Complex networks are commonly observed in several real-world areas, such as social, biological, and technical systems, where they exhibit complicated patterns of connectedness and organised clusters. These networks have intricate topological characteristics that frequently elude conventional characterization. Link prediction in complex networks, like data flow in telecommunications networks, protein interactions in biological systems, and social media interactions on platforms like Facebook, etc., is an essential element of network analytics and presents fresh research challenges. Consequently, there is a growing emphasis in research on creating new link prediction methods for different network applications. This survey investigates several strategies related to link prediction, ranging from feature extraction based to feature learning based techniques, with a specific focus on their utilisation in dynamic and developing network topologies. Furthermore, this paper emphasises on a wide variety of feature learning techniques that go beyond basic feature extraction and matrix factorization. It includes advanced learning-based algorithms and neural network techniques specifically designed for link prediction. The study also presents evaluation results of different link prediction techniques on homogeneous and heterogeneous network datasets, and provides a thorough examination of existing methods and potential areas for further investigation.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"57 12\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-024-10998-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-024-10998-7\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-10998-7","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A survey on feature extraction and learning techniques for link prediction in homogeneous and heterogeneous complex networks
Complex networks are commonly observed in several real-world areas, such as social, biological, and technical systems, where they exhibit complicated patterns of connectedness and organised clusters. These networks have intricate topological characteristics that frequently elude conventional characterization. Link prediction in complex networks, like data flow in telecommunications networks, protein interactions in biological systems, and social media interactions on platforms like Facebook, etc., is an essential element of network analytics and presents fresh research challenges. Consequently, there is a growing emphasis in research on creating new link prediction methods for different network applications. This survey investigates several strategies related to link prediction, ranging from feature extraction based to feature learning based techniques, with a specific focus on their utilisation in dynamic and developing network topologies. Furthermore, this paper emphasises on a wide variety of feature learning techniques that go beyond basic feature extraction and matrix factorization. It includes advanced learning-based algorithms and neural network techniques specifically designed for link prediction. The study also presents evaluation results of different link prediction techniques on homogeneous and heterogeneous network datasets, and provides a thorough examination of existing methods and potential areas for further investigation.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.