{"title":"基于变分量子算法的新型图像分类框架","authors":"Yixiong Chen","doi":"10.1007/s11128-024-04566-9","DOIUrl":null,"url":null,"abstract":"<div><p>Image classification is a crucial task in machine learning with widespread practical applications. The existing classical framework for image classification typically utilizes a global pooling operation at the end of the network to reduce computational complexity and mitigate overfitting. However, this operation often results in a significant loss of information, which can affect the performance of classification models. To overcome this limitation, we introduce a novel image classification framework that leverages variational quantum algorithms (VQAs) hybrid approaches combining quantum and classical computing paradigms within quantum machine learning. The major advantage of our framework is the elimination of the need for the global pooling operation at the end of the network. In this way, our approach preserves more discriminative features and fine-grained details in the images, which enhances classification performance. Additionally, employing VQAs enables our framework to have fewer parameters than the classical framework, even in the absence of global pooling, which makes it more advantageous in preventing overfitting. We apply our method to different state-of-the-art image classification models and demonstrate the superiority of the proposed quantum architecture over its classical counterpart through a series of state vector simulation experiments on public datasets. Our experiments show that the proposed quantum framework achieves up to a 9.21% increase in accuracy and up to a 15.79% improvement in F1 score, compared to the classical framework. Additionally, we explore the impact of shot noise on our method through shot-based simulation and find that increasing the number of measurements does not always lead to better results. Selecting an appropriate number of measurements can yield optimal results, even surpassing those obtained from state vector simulation.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-024-04566-9.pdf","citationCount":"0","resultStr":"{\"title\":\"A novel image classification framework based on variational quantum algorithms\",\"authors\":\"Yixiong Chen\",\"doi\":\"10.1007/s11128-024-04566-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Image classification is a crucial task in machine learning with widespread practical applications. The existing classical framework for image classification typically utilizes a global pooling operation at the end of the network to reduce computational complexity and mitigate overfitting. However, this operation often results in a significant loss of information, which can affect the performance of classification models. To overcome this limitation, we introduce a novel image classification framework that leverages variational quantum algorithms (VQAs) hybrid approaches combining quantum and classical computing paradigms within quantum machine learning. The major advantage of our framework is the elimination of the need for the global pooling operation at the end of the network. In this way, our approach preserves more discriminative features and fine-grained details in the images, which enhances classification performance. Additionally, employing VQAs enables our framework to have fewer parameters than the classical framework, even in the absence of global pooling, which makes it more advantageous in preventing overfitting. We apply our method to different state-of-the-art image classification models and demonstrate the superiority of the proposed quantum architecture over its classical counterpart through a series of state vector simulation experiments on public datasets. Our experiments show that the proposed quantum framework achieves up to a 9.21% increase in accuracy and up to a 15.79% improvement in F1 score, compared to the classical framework. Additionally, we explore the impact of shot noise on our method through shot-based simulation and find that increasing the number of measurements does not always lead to better results. Selecting an appropriate number of measurements can yield optimal results, even surpassing those obtained from state vector simulation.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"23 10\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11128-024-04566-9.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-024-04566-9\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04566-9","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
A novel image classification framework based on variational quantum algorithms
Image classification is a crucial task in machine learning with widespread practical applications. The existing classical framework for image classification typically utilizes a global pooling operation at the end of the network to reduce computational complexity and mitigate overfitting. However, this operation often results in a significant loss of information, which can affect the performance of classification models. To overcome this limitation, we introduce a novel image classification framework that leverages variational quantum algorithms (VQAs) hybrid approaches combining quantum and classical computing paradigms within quantum machine learning. The major advantage of our framework is the elimination of the need for the global pooling operation at the end of the network. In this way, our approach preserves more discriminative features and fine-grained details in the images, which enhances classification performance. Additionally, employing VQAs enables our framework to have fewer parameters than the classical framework, even in the absence of global pooling, which makes it more advantageous in preventing overfitting. We apply our method to different state-of-the-art image classification models and demonstrate the superiority of the proposed quantum architecture over its classical counterpart through a series of state vector simulation experiments on public datasets. Our experiments show that the proposed quantum framework achieves up to a 9.21% increase in accuracy and up to a 15.79% improvement in F1 score, compared to the classical framework. Additionally, we explore the impact of shot noise on our method through shot-based simulation and find that increasing the number of measurements does not always lead to better results. Selecting an appropriate number of measurements can yield optimal results, even surpassing those obtained from state vector simulation.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.