{"title":"考虑龄期效应的石灰改良分散土三轴试验和模型研究","authors":"Jianxin He, Pengzhan Gao, Haihua Yang, Weiheng Tian, Jinhua Ding","doi":"10.1007/s10064-024-03942-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the influence of age on the mechanical properties of lime-modified dispersed soils through consolidation undrained triaxial tests conducted at various age (t) and lime content (a). Empirical equations for Duncan-Chang model parameters K, n, c, and φ incorporating the age factor were established based on experimental results, focusing on lime modification at 2% content. The stress-strain curves of dispersed soils exhibit strain-hardening characteristics, with stress levels increasing notably with age, displaying significant variation between short and long durations. Conversely, the stress-strain curve for lime-modified dispersed soil at 2% content shows strain-softening behavior. Age exerts a substantial influence on model parameters K, n, c, and φ of the Duncan-Chang model, with a minor impact on Rf. The modified model demonstrates a strong fit to stress-strain curves of lime-modified dispersed soil before reaching failure, validated against experimental data at age of 14 days and 90 days. Importantly, the modified model accurately predicts stress-strain relationships for modified soils over extended age beyond 28 days, providing meaningful insights for the long-term stability assessment of soil-modified structures.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"83 11","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triaxial testing and model study on lime modified dispersive soil considering age effects\",\"authors\":\"Jianxin He, Pengzhan Gao, Haihua Yang, Weiheng Tian, Jinhua Ding\",\"doi\":\"10.1007/s10064-024-03942-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigates the influence of age on the mechanical properties of lime-modified dispersed soils through consolidation undrained triaxial tests conducted at various age (t) and lime content (a). Empirical equations for Duncan-Chang model parameters K, n, c, and φ incorporating the age factor were established based on experimental results, focusing on lime modification at 2% content. The stress-strain curves of dispersed soils exhibit strain-hardening characteristics, with stress levels increasing notably with age, displaying significant variation between short and long durations. Conversely, the stress-strain curve for lime-modified dispersed soil at 2% content shows strain-softening behavior. Age exerts a substantial influence on model parameters K, n, c, and φ of the Duncan-Chang model, with a minor impact on Rf. The modified model demonstrates a strong fit to stress-strain curves of lime-modified dispersed soil before reaching failure, validated against experimental data at age of 14 days and 90 days. Importantly, the modified model accurately predicts stress-strain relationships for modified soils over extended age beyond 28 days, providing meaningful insights for the long-term stability assessment of soil-modified structures.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"83 11\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-03942-0\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-03942-0","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Triaxial testing and model study on lime modified dispersive soil considering age effects
This study investigates the influence of age on the mechanical properties of lime-modified dispersed soils through consolidation undrained triaxial tests conducted at various age (t) and lime content (a). Empirical equations for Duncan-Chang model parameters K, n, c, and φ incorporating the age factor were established based on experimental results, focusing on lime modification at 2% content. The stress-strain curves of dispersed soils exhibit strain-hardening characteristics, with stress levels increasing notably with age, displaying significant variation between short and long durations. Conversely, the stress-strain curve for lime-modified dispersed soil at 2% content shows strain-softening behavior. Age exerts a substantial influence on model parameters K, n, c, and φ of the Duncan-Chang model, with a minor impact on Rf. The modified model demonstrates a strong fit to stress-strain curves of lime-modified dispersed soil before reaching failure, validated against experimental data at age of 14 days and 90 days. Importantly, the modified model accurately predicts stress-strain relationships for modified soils over extended age beyond 28 days, providing meaningful insights for the long-term stability assessment of soil-modified structures.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.