Matheus Andrade Meirelles, Vitor M. Almeida, Jaryd R. Sullivan, Ian de Toledo, Caio Vinicius dos Reis, Micael Rodrigues Cunha, Rachel Zigweid, Abraham Shim, Banumathi Sankaran, Elijah L. Woodward, Steve Seibold, Lijun Liu, Mohammad Rasel Mian, Kevin P. Battaile, Jennifer Riley, Christina Duncan, Frederick R. C. Simeons, Liam Ferguson, Halimatu Joji, Kevin D. Read, Scott Lovell, Bart L. Staker, Marcel A. Behr, Ronaldo A. Pilli, Rafael M. Couñago
{"title":"理性探索 2,4-二氨基嘧啶作为 DHFR 抑制剂对两种新出现的人类病原体--脓肿分枝杆菌和分枝杆菌--的活性","authors":"Matheus Andrade Meirelles, Vitor M. Almeida, Jaryd R. Sullivan, Ian de Toledo, Caio Vinicius dos Reis, Micael Rodrigues Cunha, Rachel Zigweid, Abraham Shim, Banumathi Sankaran, Elijah L. Woodward, Steve Seibold, Lijun Liu, Mohammad Rasel Mian, Kevin P. Battaile, Jennifer Riley, Christina Duncan, Frederick R. C. Simeons, Liam Ferguson, Halimatu Joji, Kevin D. Read, Scott Lovell, Bart L. Staker, Marcel A. Behr, Ronaldo A. Pilli, Rafael M. Couñago","doi":"10.1021/acs.jmedchem.4c01594","DOIUrl":null,"url":null,"abstract":"Nontuberculous mycobacteria (NTM) are emerging human pathogens linked to severe pulmonary diseases. Current treatments involve the prolonged use of multiple drugs and are often ineffective. Bacterial dihydrofolate reductase (DHFR) is a key enzyme targeted by antibiotics in Gram-negative bacterial infections. However, existing DHFR inhibitors designed for Gram-negative bacteria often fail against mycobacterial DHFRs. Here, we detail the rational design of NTM DHFR inhibitors based on <b>P218</b>, a malarial DHFR inhibitor. We identified compound <b>8</b>, a 2,4-diaminopyrimidine exhibiting improved pharmacological properties and activity against purified DHFR, and whole cell cultures of two predominant NTM species: <i>Mycobacterium avium</i> and <i>Mycobacterium abscessus</i>. This study underscores the potential of compound <b>8</b> as a promising candidate for the <i>in vivo</i> validation of DHFR as an effective treatment against NTM infections.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational Exploration of 2,4-Diaminopyrimidines as DHFR Inhibitors Active against Mycobacterium abscessus and Mycobacterium avium, Two Emerging Human Pathogens\",\"authors\":\"Matheus Andrade Meirelles, Vitor M. Almeida, Jaryd R. Sullivan, Ian de Toledo, Caio Vinicius dos Reis, Micael Rodrigues Cunha, Rachel Zigweid, Abraham Shim, Banumathi Sankaran, Elijah L. Woodward, Steve Seibold, Lijun Liu, Mohammad Rasel Mian, Kevin P. Battaile, Jennifer Riley, Christina Duncan, Frederick R. C. Simeons, Liam Ferguson, Halimatu Joji, Kevin D. Read, Scott Lovell, Bart L. Staker, Marcel A. Behr, Ronaldo A. Pilli, Rafael M. Couñago\",\"doi\":\"10.1021/acs.jmedchem.4c01594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nontuberculous mycobacteria (NTM) are emerging human pathogens linked to severe pulmonary diseases. Current treatments involve the prolonged use of multiple drugs and are often ineffective. Bacterial dihydrofolate reductase (DHFR) is a key enzyme targeted by antibiotics in Gram-negative bacterial infections. However, existing DHFR inhibitors designed for Gram-negative bacteria often fail against mycobacterial DHFRs. Here, we detail the rational design of NTM DHFR inhibitors based on <b>P218</b>, a malarial DHFR inhibitor. We identified compound <b>8</b>, a 2,4-diaminopyrimidine exhibiting improved pharmacological properties and activity against purified DHFR, and whole cell cultures of two predominant NTM species: <i>Mycobacterium avium</i> and <i>Mycobacterium abscessus</i>. This study underscores the potential of compound <b>8</b> as a promising candidate for the <i>in vivo</i> validation of DHFR as an effective treatment against NTM infections.\",\"PeriodicalId\":46,\"journal\":{\"name\":\"Journal of Medicinal Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jmedchem.4c01594\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c01594","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Rational Exploration of 2,4-Diaminopyrimidines as DHFR Inhibitors Active against Mycobacterium abscessus and Mycobacterium avium, Two Emerging Human Pathogens
Nontuberculous mycobacteria (NTM) are emerging human pathogens linked to severe pulmonary diseases. Current treatments involve the prolonged use of multiple drugs and are often ineffective. Bacterial dihydrofolate reductase (DHFR) is a key enzyme targeted by antibiotics in Gram-negative bacterial infections. However, existing DHFR inhibitors designed for Gram-negative bacteria often fail against mycobacterial DHFRs. Here, we detail the rational design of NTM DHFR inhibitors based on P218, a malarial DHFR inhibitor. We identified compound 8, a 2,4-diaminopyrimidine exhibiting improved pharmacological properties and activity against purified DHFR, and whole cell cultures of two predominant NTM species: Mycobacterium avium and Mycobacterium abscessus. This study underscores the potential of compound 8 as a promising candidate for the in vivo validation of DHFR as an effective treatment against NTM infections.
期刊介绍:
The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents.
The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.