Hans Carolus, Dimitrios Sofras, Giorgio Boccarella, Stef Jacobs, Vladislav Biriukov, Louise Goossens, Alicia Chen, Ina Vantyghem, Tibo Verbeeck, Siebe Pierson, Celia Lobo Romero, Hans Steenackers, Katrien Lagrou, Pieter van den Berg, Judith Berman, Toni Gabaldón, Patrick Van Dijck
{"title":"附带敏感性抵消了白色念珠菌抗真菌药物耐药性的演变","authors":"Hans Carolus, Dimitrios Sofras, Giorgio Boccarella, Stef Jacobs, Vladislav Biriukov, Louise Goossens, Alicia Chen, Ina Vantyghem, Tibo Verbeeck, Siebe Pierson, Celia Lobo Romero, Hans Steenackers, Katrien Lagrou, Pieter van den Berg, Judith Berman, Toni Gabaldón, Patrick Van Dijck","doi":"10.1038/s41564-024-01811-w","DOIUrl":null,"url":null,"abstract":"Antifungal drug resistance represents a serious global health threat, necessitating new treatment strategies. Here we investigated collateral sensitivity (CS), in which resistance to one drug increases sensitivity to another, and cross-resistance (XR), in which one drug resistance mechanism reduces susceptibility to multiple drugs, since CS and XR dynamics can guide treatment design to impede resistance development, but have not been systematically explored in pathogenic fungi. We used experimental evolution and mathematical modelling of Candida auris population dynamics during cyclic and combined drug exposures and found that especially CS-based drug cycling can effectively prevent the emergence of drug resistance. In addition, we found that a CS-based treatment switch can actively select against or eradicate resistant sub-populations, highlighting the potential to consider CS in therapeutic decision-making upon resistance detection. Furthermore, we show that some CS trends are robust among different strains and resistance mechanisms. Overall, these findings provide a promising direction for improved antifungal treatment approaches. Collateral-sensitivity-based drug cycling effectively prevents and impedes the evolution of antifungal drug resistance in Candida auris.","PeriodicalId":18992,"journal":{"name":"Nature Microbiology","volume":"9 11","pages":"2954-2969"},"PeriodicalIF":20.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collateral sensitivity counteracts the evolution of antifungal drug resistance in Candida auris\",\"authors\":\"Hans Carolus, Dimitrios Sofras, Giorgio Boccarella, Stef Jacobs, Vladislav Biriukov, Louise Goossens, Alicia Chen, Ina Vantyghem, Tibo Verbeeck, Siebe Pierson, Celia Lobo Romero, Hans Steenackers, Katrien Lagrou, Pieter van den Berg, Judith Berman, Toni Gabaldón, Patrick Van Dijck\",\"doi\":\"10.1038/s41564-024-01811-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Antifungal drug resistance represents a serious global health threat, necessitating new treatment strategies. Here we investigated collateral sensitivity (CS), in which resistance to one drug increases sensitivity to another, and cross-resistance (XR), in which one drug resistance mechanism reduces susceptibility to multiple drugs, since CS and XR dynamics can guide treatment design to impede resistance development, but have not been systematically explored in pathogenic fungi. We used experimental evolution and mathematical modelling of Candida auris population dynamics during cyclic and combined drug exposures and found that especially CS-based drug cycling can effectively prevent the emergence of drug resistance. In addition, we found that a CS-based treatment switch can actively select against or eradicate resistant sub-populations, highlighting the potential to consider CS in therapeutic decision-making upon resistance detection. Furthermore, we show that some CS trends are robust among different strains and resistance mechanisms. Overall, these findings provide a promising direction for improved antifungal treatment approaches. Collateral-sensitivity-based drug cycling effectively prevents and impedes the evolution of antifungal drug resistance in Candida auris.\",\"PeriodicalId\":18992,\"journal\":{\"name\":\"Nature Microbiology\",\"volume\":\"9 11\",\"pages\":\"2954-2969\"},\"PeriodicalIF\":20.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.nature.com/articles/s41564-024-01811-w\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41564-024-01811-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Collateral sensitivity counteracts the evolution of antifungal drug resistance in Candida auris
Antifungal drug resistance represents a serious global health threat, necessitating new treatment strategies. Here we investigated collateral sensitivity (CS), in which resistance to one drug increases sensitivity to another, and cross-resistance (XR), in which one drug resistance mechanism reduces susceptibility to multiple drugs, since CS and XR dynamics can guide treatment design to impede resistance development, but have not been systematically explored in pathogenic fungi. We used experimental evolution and mathematical modelling of Candida auris population dynamics during cyclic and combined drug exposures and found that especially CS-based drug cycling can effectively prevent the emergence of drug resistance. In addition, we found that a CS-based treatment switch can actively select against or eradicate resistant sub-populations, highlighting the potential to consider CS in therapeutic decision-making upon resistance detection. Furthermore, we show that some CS trends are robust among different strains and resistance mechanisms. Overall, these findings provide a promising direction for improved antifungal treatment approaches. Collateral-sensitivity-based drug cycling effectively prevents and impedes the evolution of antifungal drug resistance in Candida auris.
期刊介绍:
Nature Microbiology aims to cover a comprehensive range of topics related to microorganisms. This includes:
Evolution: The journal is interested in exploring the evolutionary aspects of microorganisms. This may include research on their genetic diversity, adaptation, and speciation over time.
Physiology and cell biology: Nature Microbiology seeks to understand the functions and characteristics of microorganisms at the cellular and physiological levels. This may involve studying their metabolism, growth patterns, and cellular processes.
Interactions: The journal focuses on the interactions microorganisms have with each other, as well as their interactions with hosts or the environment. This encompasses investigations into microbial communities, symbiotic relationships, and microbial responses to different environments.
Societal significance: Nature Microbiology recognizes the societal impact of microorganisms and welcomes studies that explore their practical applications. This may include research on microbial diseases, biotechnology, or environmental remediation.
In summary, Nature Microbiology is interested in research related to the evolution, physiology and cell biology of microorganisms, their interactions, and their societal relevance.