Jiang-Wen Yan , Zi-Yue Liu , Shitao Song , Ye-Nan Bian , Ruihan Wang , Jian-Long Du
{"title":"基于孔径控制策略的两种 In-MOFs 用于高选择性分离 SF6","authors":"Jiang-Wen Yan , Zi-Yue Liu , Shitao Song , Ye-Nan Bian , Ruihan Wang , Jian-Long Du","doi":"10.1016/j.ces.2024.120871","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient adsorption and separation of SF<sub>6</sub> is very important for the electrical industry. In the present work, two In-MOFs (In-MOF1, In-MOF2) have been synthesized and characterized. The compounds show three-dimensional coordination networks. And the BET surface areas of them reach 859.7 cm<sup>2</sup>/g and 971.1 cm<sup>2</sup>/g, respectively. More importantly, their averaged pore sizes are mainly 5.24 Å and 5.67 Å, which are well matched with the kinetic diameter of SF<sub>6</sub> (5.2 Å). The compounds show higher adsorption capacities of SF<sub>6</sub> (2.66 mmol/g for In-MOF1, 2.41 mmol/g for In-MOF2) at ambient temperature and pressure. And the excellent IAST selectivities of SF<sub>6</sub>/N<sub>2</sub> (v/v: 10:90) up to 237.8 and 235.2 at 100 kPa. Their efficient adsorption and separation performance is mainly related to the appropriate pore size and stronger host–guest interactions. DFT calculations and theoretical simulations further support the experimental results. Furthermore, dynamic breakthrough experiments show that the actual separation coefficient can reach 262.2 and 340.8, exceeding the theoretical prediction results. The results will contribute to the design of efficient MOFs adsorbents for the selective capture of SF<sub>6</sub>.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"302 ","pages":"Article 120871"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two In-MOFs based on pore size control strategy for highly selective separation of SF6\",\"authors\":\"Jiang-Wen Yan , Zi-Yue Liu , Shitao Song , Ye-Nan Bian , Ruihan Wang , Jian-Long Du\",\"doi\":\"10.1016/j.ces.2024.120871\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient adsorption and separation of SF<sub>6</sub> is very important for the electrical industry. In the present work, two In-MOFs (In-MOF1, In-MOF2) have been synthesized and characterized. The compounds show three-dimensional coordination networks. And the BET surface areas of them reach 859.7 cm<sup>2</sup>/g and 971.1 cm<sup>2</sup>/g, respectively. More importantly, their averaged pore sizes are mainly 5.24 Å and 5.67 Å, which are well matched with the kinetic diameter of SF<sub>6</sub> (5.2 Å). The compounds show higher adsorption capacities of SF<sub>6</sub> (2.66 mmol/g for In-MOF1, 2.41 mmol/g for In-MOF2) at ambient temperature and pressure. And the excellent IAST selectivities of SF<sub>6</sub>/N<sub>2</sub> (v/v: 10:90) up to 237.8 and 235.2 at 100 kPa. Their efficient adsorption and separation performance is mainly related to the appropriate pore size and stronger host–guest interactions. DFT calculations and theoretical simulations further support the experimental results. Furthermore, dynamic breakthrough experiments show that the actual separation coefficient can reach 262.2 and 340.8, exceeding the theoretical prediction results. The results will contribute to the design of efficient MOFs adsorbents for the selective capture of SF<sub>6</sub>.</div></div>\",\"PeriodicalId\":271,\"journal\":{\"name\":\"Chemical Engineering Science\",\"volume\":\"302 \",\"pages\":\"Article 120871\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009250924011710\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250924011710","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Two In-MOFs based on pore size control strategy for highly selective separation of SF6
Efficient adsorption and separation of SF6 is very important for the electrical industry. In the present work, two In-MOFs (In-MOF1, In-MOF2) have been synthesized and characterized. The compounds show three-dimensional coordination networks. And the BET surface areas of them reach 859.7 cm2/g and 971.1 cm2/g, respectively. More importantly, their averaged pore sizes are mainly 5.24 Å and 5.67 Å, which are well matched with the kinetic diameter of SF6 (5.2 Å). The compounds show higher adsorption capacities of SF6 (2.66 mmol/g for In-MOF1, 2.41 mmol/g for In-MOF2) at ambient temperature and pressure. And the excellent IAST selectivities of SF6/N2 (v/v: 10:90) up to 237.8 and 235.2 at 100 kPa. Their efficient adsorption and separation performance is mainly related to the appropriate pore size and stronger host–guest interactions. DFT calculations and theoretical simulations further support the experimental results. Furthermore, dynamic breakthrough experiments show that the actual separation coefficient can reach 262.2 and 340.8, exceeding the theoretical prediction results. The results will contribute to the design of efficient MOFs adsorbents for the selective capture of SF6.
期刊介绍:
Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline.
Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.