{"title":"用于活细胞膜抗原的自催化-集成生物正交(多)催化剂联结免疫吸附试验。","authors":"Xuepu Feng, Guoming Tong, Zengwei Ran, Xiaojuan Liu, Liang Li, Guhuan Liu, Ronghua Yang","doi":"10.1002/anie.202417352","DOIUrl":null,"url":null,"abstract":"<p><p>Immunoassay methods, notably enzyme-linked immunosorbent assays (ELISAs), renowned for their signal amplification capabilities, are extensively employed in scientific research and clinical diagnostics. However, the instability of enzymes and their sensitivity to cellular environments present significant challenges for the broad application of ELISA in living cells. In this work, we present a bioorthogonal (poly)catalysis-linked immunosorbent assay (BCLISA) designed for the detection of cell membrane antigens, which involves coupling bioorthogonal catalysts based on small molecules or polymers to antibodies. After screening, we opted for the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) as the core reaction system. The polymer-based catalysts exhibit enhanced reactivity at the same molecular concentration due to their multiple catalytic sites. Polytriazoles formed during the CuAAC reaction have the ability to chelate Cu(I), therebypromoting faster catalysis. By harnessing this autocatalytic feature, we successfully increased the signal amplification potential of BCLISA. Ultimately, this autocatalysis-integrated BCLISA technique was employed for antigen detection and imaging on both in vitro and living cell membranes. This approach offers a new method for the detection and imaging of low-abundance antigens on living cells.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autocatalysis-Integrated Bioorthogonal (Poly)Catalyst-Linked Immunosorbent Assay for Living Cell Membrane Antigens.\",\"authors\":\"Xuepu Feng, Guoming Tong, Zengwei Ran, Xiaojuan Liu, Liang Li, Guhuan Liu, Ronghua Yang\",\"doi\":\"10.1002/anie.202417352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immunoassay methods, notably enzyme-linked immunosorbent assays (ELISAs), renowned for their signal amplification capabilities, are extensively employed in scientific research and clinical diagnostics. However, the instability of enzymes and their sensitivity to cellular environments present significant challenges for the broad application of ELISA in living cells. In this work, we present a bioorthogonal (poly)catalysis-linked immunosorbent assay (BCLISA) designed for the detection of cell membrane antigens, which involves coupling bioorthogonal catalysts based on small molecules or polymers to antibodies. After screening, we opted for the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) as the core reaction system. The polymer-based catalysts exhibit enhanced reactivity at the same molecular concentration due to their multiple catalytic sites. Polytriazoles formed during the CuAAC reaction have the ability to chelate Cu(I), therebypromoting faster catalysis. By harnessing this autocatalytic feature, we successfully increased the signal amplification potential of BCLISA. Ultimately, this autocatalysis-integrated BCLISA technique was employed for antigen detection and imaging on both in vitro and living cell membranes. This approach offers a new method for the detection and imaging of low-abundance antigens on living cells.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202417352\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202417352","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Autocatalysis-Integrated Bioorthogonal (Poly)Catalyst-Linked Immunosorbent Assay for Living Cell Membrane Antigens.
Immunoassay methods, notably enzyme-linked immunosorbent assays (ELISAs), renowned for their signal amplification capabilities, are extensively employed in scientific research and clinical diagnostics. However, the instability of enzymes and their sensitivity to cellular environments present significant challenges for the broad application of ELISA in living cells. In this work, we present a bioorthogonal (poly)catalysis-linked immunosorbent assay (BCLISA) designed for the detection of cell membrane antigens, which involves coupling bioorthogonal catalysts based on small molecules or polymers to antibodies. After screening, we opted for the copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) as the core reaction system. The polymer-based catalysts exhibit enhanced reactivity at the same molecular concentration due to their multiple catalytic sites. Polytriazoles formed during the CuAAC reaction have the ability to chelate Cu(I), therebypromoting faster catalysis. By harnessing this autocatalytic feature, we successfully increased the signal amplification potential of BCLISA. Ultimately, this autocatalysis-integrated BCLISA technique was employed for antigen detection and imaging on both in vitro and living cell membranes. This approach offers a new method for the detection and imaging of low-abundance antigens on living cells.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.