胰腺癌早期检测的进展:人工智能和新型成像技术的作用。

IF 2.3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Abdominal Radiology Pub Date : 2024-10-28 DOI:10.1007/s00261-024-04644-7
Chenchan Huang, Yiqiu Shen, Samuel J Galgano, Ajit H Goenka, Elizabeth M Hecht, Avinash Kambadakone, Zhen Jane Wang, Linda C Chu
{"title":"胰腺癌早期检测的进展:人工智能和新型成像技术的作用。","authors":"Chenchan Huang, Yiqiu Shen, Samuel J Galgano, Ajit H Goenka, Elizabeth M Hecht, Avinash Kambadakone, Zhen Jane Wang, Linda C Chu","doi":"10.1007/s00261-024-04644-7","DOIUrl":null,"url":null,"abstract":"<p><p>Early detection is crucial for improving survival rates of pancreatic ductal adenocarcinoma (PDA), yet current diagnostic methods can often fail at this stage. Recently, there has been significant interest in improving risk stratification and developing imaging biomarkers, through novel imaging techniques, and most notably, artificial intelligence (AI) technology. This review provides an overview of these advancements, with a focus on deep learning methods for early detection of PDA.</p>","PeriodicalId":7126,"journal":{"name":"Abdominal Radiology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in early detection of pancreatic cancer: the role of artificial intelligence and novel imaging techniques.\",\"authors\":\"Chenchan Huang, Yiqiu Shen, Samuel J Galgano, Ajit H Goenka, Elizabeth M Hecht, Avinash Kambadakone, Zhen Jane Wang, Linda C Chu\",\"doi\":\"10.1007/s00261-024-04644-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Early detection is crucial for improving survival rates of pancreatic ductal adenocarcinoma (PDA), yet current diagnostic methods can often fail at this stage. Recently, there has been significant interest in improving risk stratification and developing imaging biomarkers, through novel imaging techniques, and most notably, artificial intelligence (AI) technology. This review provides an overview of these advancements, with a focus on deep learning methods for early detection of PDA.</p>\",\"PeriodicalId\":7126,\"journal\":{\"name\":\"Abdominal Radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abdominal Radiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00261-024-04644-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abdominal Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00261-024-04644-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

早期发现对于提高胰腺导管腺癌(PDA)的存活率至关重要,但目前的诊断方法往往在这一阶段失效。最近,人们对通过新型成像技术以及最引人注目的人工智能(AI)技术改善风险分层和开发成像生物标志物产生了浓厚的兴趣。本综述概述了这些进展,重点介绍了用于 PDA 早期检测的深度学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Advancements in early detection of pancreatic cancer: the role of artificial intelligence and novel imaging techniques.

Early detection is crucial for improving survival rates of pancreatic ductal adenocarcinoma (PDA), yet current diagnostic methods can often fail at this stage. Recently, there has been significant interest in improving risk stratification and developing imaging biomarkers, through novel imaging techniques, and most notably, artificial intelligence (AI) technology. This review provides an overview of these advancements, with a focus on deep learning methods for early detection of PDA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Abdominal Radiology
Abdominal Radiology Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
5.20
自引率
8.30%
发文量
334
期刊介绍: Abdominal Radiology seeks to meet the professional needs of the abdominal radiologist by publishing clinically pertinent original, review and practice related articles on the gastrointestinal and genitourinary tracts and abdominal interventional and radiologic procedures. Case reports are generally not accepted unless they are the first report of a new disease or condition, or part of a special solicited section. Reasons to Publish Your Article in Abdominal Radiology: · Official journal of the Society of Abdominal Radiology (SAR) · Published in Cooperation with: European Society of Gastrointestinal and Abdominal Radiology (ESGAR) European Society of Urogenital Radiology (ESUR) Asian Society of Abdominal Radiology (ASAR) · Efficient handling and Expeditious review · Author feedback is provided in a mentoring style · Global readership · Readers can earn CME credits
期刊最新文献
Renovascular hypertension - a primer for the radiologist. Assessment of high-risk gastroesophageal varices in cirrhotic patients using quantitative parameters from dual-source dual-energy CT. Dynamic changes of radiological and radiomics patterns based on MRI in viable hepatocellular carcinoma after transarterial chemoembolization. Enhancing bone metastasis prediction in prostate cancer using quantitative mpMRI features, ISUP grade and PSA density: a machine learning approach. Exam quality of ultrasound and dynamic contrast-enhanced abbreviated MRI and impact on early-stage HCC detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1